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Fig. 3. Approximated polyhedrons for R = 8.6 with different initial conditions.
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Fig. 4. Dependence of the number of spots on the relative radius.

Fig. 5. Examples of numerical solutions rescaled in order to be proportional to R. From left to right, the images correspond to R = 6, 8, and 10.

that were obtained during the approximation procedure.
The Coulomb energy E is defined by

E =
n−1∑
i=1

n∑
j=i+1

1

|ri − r j | , (5)

where ri is the position vector of the i-th center, and n is
number of points on the sphere. The Coulomb angle is
the minimum angular separation between pairs of points.
The value is determined as the smallest value among the
arccosines of the inner products of all pairs of points.

3. Results
The patterns of both u and v changed with time from

the initial state and finally reached stable states. The ini-

tial random pattern changed gradually to a stripped pat-
tern, the stripes collapsed, and then spots formed. When R
was larger, stable solutions were reached more rapidly than
when R was smaller. Below, we will discuss the patterns at
t = 3, 200, by which time all solutions were considered to
be stable.

Figure 2 shows an example of Turing patterns on a spher-
ical surface for R = 12.0. These patterns were obtained as
stable solutions of u and v. The result are represented by a
gray scale. The values are scaled according to a linear trans-
formation for which the minimum value (zero) is black, and
the maximum value (one) is white. The spherical surfaces
were divided into polygons obtained from the Voronoi tes-
sellation of the grid points. Each polygon was colored ac-


