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various occasions such as the study of disintegration of the
invariant curves (Greene, 1979), structure of the intersec-
tion of the stable and unstable manifolds of the saddle fixed
point (Yamaguchi and Tanikawa, 2001), and construction of
the resonance regions (Yamaguchi and Tanikawa, 2009).

In the present paper, we take f (x) = fL(x) = (a/2)(1−
|2x−1|) for a ≥ 0. This is called the Lozi map (Lozi, 1978).
The map is a piecewise linear version of the connecting map
with f (x) = fH (x). For a > 0, we have fL(0) = fL(1) =
fH (0) = fH (1) = 0. We also have f ′

L(0) = f ′
H (0) = a

and f ′
L(1) = f ′

H (1) = −a, where the prime denotes the
differentiation with respect to the argument, and f ′(0), say,
is the slope of function f (x) at x = 0. The connecting maps
and Lozi maps have fixed points P = (0, 0) and Q = (1, 0)

for a > 0.
The fixed point P is a saddle with eigenvalues λ± where

0 < λ− < 1 < λ+. For 0 < a < 4, Q is an elliptic fixed
point with complex eigenvalues. At a = 4, Q undergoes
period doubling bifurcation. At a > 4, Q is a saddle with
reflection with eigenvalues λ− < −1 < λ+ < 0.

The Smale horseshoe exists at a ≥ 5.176605 . . . (Yam-
aguchi and Tanikawa, 2009) for the connecting maps, while
at a ≥ aSH

c = 4.229981 . . . for the Lozi map. In the
Lozi map, the mapping function fL(x) has a break point
at x = 1/2. As a result, the stable manifold Ws and the un-
stable manifold Wu of P have the break points (see Fig. 1).
Using the break point, the critical value aSH

c is determined
analytically (see Appendix A).

The properties of the horseshoe are discussed in Guck-
enheimer and Holmes (1983), Gilmore and Lefranc (2002),
and Yamaguchi and Tanikawa (2016).

Section 2 is for preparations. We summarize the bifurca-
tions used in this paper and define the dominant axis for T q

for q ≥ 1. In Sec. 3, we study the bifurcations in the Lozi
map. It is shown that the dominant axis theorem does not
hold for the Lozi map. In Sec. 4, a new theorem is obtained.
In Sec. 5, we give concluding remarks.

2. Mathematical Tools
2.1 Bifurcations

We explain several known terms used in this paper. If
the eigenvalues of the linearized matrix are complex, we
call the corresponding periodic orbit “the elliptic periodic
orbit with complex eigenvalues”. In the following argument
the cases with λ = ±1 are treated as those with complex
eigenvalues for convenience.

If the eigenvalues satisfy relations λ− < −1 < λ+ < 0,
we call the corresponding periodic orbit “the saddle peri-
odic orbit with reflection”. The elliptic periodic orbit with
complex eigenvalues and the saddle periodic orbit with re-
flection will together be called “elliptic” in the present re-
port. If the eigenvalues satisfy relations 0 < λ− < 1 < λ+,
we call this periodic orbit a “saddle” as usual.

In this paper, we use the three bifurcations named rota-
tion bifurcation, period doubling bifurcation and equiperiod
bifurcation. In the following, we summarize them.

(i) Rotation bifurcation. If the average rotation rate, i.e.,
rotation number, around elliptic fixed point Q becomes
an irreducible fraction p/q satisfying the conditions 0 <

Fig. 1. The branches of symmetry axes S+
g , S−

g , S+
h , and S−

h are displayed
at a = 3. The intersection points of symmetry axes are the fixed points
P and Q. The stable manifold Ws and the unstable manifold Wu of the
saddle fixed point P are also illustrated.

p/q < 1/2, a pair of elliptic and saddle periodic orbits
are born. We call this the rotation bifurcation of Q. Bi-
furcation parameter value is a = ac(p/q) = 4 sin2(πp/q).
We denote the elliptic orbit by p/q-BE, and the saddle or-
bit by p/q-BS. Here, E in BE stands for “elliptic”, S in
BS for “saddle”, and B in BE and BS for “Birkhoff”. The
“Birkhoff” comes from mathematician’s name who studied
the order-preservation property of orbits (Birkhoff, 1966).
These are symmetric periodic orbits.

(ii) Period doubling bifurcation. The elliptic periodic or-
bit undergoes period doubling bifurcation if its eigenvalues
arrive at λ = −1 on the complex eigenvalue space. Af-
ter period doubling bifurcation, the mother orbit becomes a
saddle with reflection. A daughter periodic orbit with twice
the period appears from the mother point and is elliptic with
complex eigenvalues just after the appearance.

(iii) Equiperiod bifurcation. The elliptic periodic orbit
undergoes equiperiod bifurcation if its eigenvalues arrive
at λ = +1 on the complex eigenvalue space. After the
equiperiod bifurcation, the mother orbit becomes a saddle.
Two daughter periodic orbits of the same period appear
from the mother point and are elliptic with complex eigen-
values just after the appearance.
2.2 Involutions and symmetry axes for T

The Lozi map T is reversible. The set of the fixed points
of involution is the symmetry axis. We give the representa-
tions of the symmetry axes Sg and Sh .

Sg : y = − f (x)/2, Sh : y = 0. (3)

Here, we also define the branches of symmetry axes.

S+
g : y = − f (x)/2 (x ≥ 1), S−

g : y = − f (x)/2 (x < 1).

(4)
S+

h : y = 0 (x ≥ 1), S−
h : y = 0 (x < 1). (5)

Here, S+
g is conventionally called the dominant axis

(Dulling et al., 2005). The symmetry axes and the stable
and unstable manifolds of P are displayed in Fig. 1.


