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Fig. 2. Sway values in the elderly subjects with their eyes open; Area of
sway (a), Total locus length (b). Black square: Young subjects; gray
square: middle-aged subjects; white square: elderly subjects.

3D with the perspective clues (p < 0.05). The total locus
length per unit area while viewing the 3D without the per-
spective clues was significantly greater than that with eyes
closed afterward (p < 0.05). No significant difference was
noted in the other analytical parameters in the elderly sub-
jects.

In the young subjects, the total locus length while view-
ing the 2D without the perspective clues was significantly
greater than that in the test with closed eyes (p < 0.05).
No significant difference was noted in the other analytical
indices for stabilogram. In the middle-aged subjects, no
significant difference was also noted in any indices.

Based on the Markov property and the x-y independence
in components of the body sway, the Brownian motion is
system proposed as a mathematical model to express the
equilibrium function (Goldie et al., 1986; Collins and De
Luca, 1993). In general, stochastic processes including the
Brownian motion are expressed by stochastic differential
equations (SDEs) that are expected to apply to diagnose
the vertigo. In contrast, we focused on the individuality of
this equilibrium system and showed that it is necessary to
consider the nonlinearity in the following SDE (Takada and
Miyao, 2012);

ż = −gradUz(z) + µwz(t) (1)

where µ and wz(t) express the noise coefficient and the
white noise, respectively (z = x, y). This second term
µwz(t) expresses small perturbation for the time-average
potential function Uz(z), which drives the COP. Assuming
that the motion process is stationary without the anoma-
lous diffusion, we have succeeded in deriving the relation-
ship between the potential function Uz(z) in each SDE and

Fig. 3. Rigidity µ�t under each condition (with their eyes open). Black
square: Young subjects; gray square: middle-aged subjects; white
square: elderly subjects.

the stationary distribution Gz(z) for each component of the
body sway as

Uz(z) = −1

2
ln Gz(z) (2)

under the condition of µ = 1. However, this condition re-
quests to normalize the data in the analysis of the time se-
ries. In this study, we employed numerical analysis of the
SDE (1) including the coefficient µ, and we estimated the
optimal value to reproduce form of the stabilogram. In this
study, we assumed Histograms obtained from the stabilom-
etry is regarded as stationary distributions (Takada, 2004).
Based on Eq. (2), the potential functions are regressed to
the parabolic polynomial as

Ûz(z) = az2 + bz (3)

by using the mean square method. Substituting this polyno-
mial (3) into the first term in the right hand side of Eq. (1)
as U = Û , we employed numerical analysis of the SDEs
(1). Setting the initial value (x, y) to be (0, 0), wz(t) is sub-
stituted to pseudo random numbers whose distribution is re-
garded to be uniform (mean ± standard deviation: 1 ± 1).
Numerical solutions of 11,200 steps are herein obtained
from the Runge-Kutta formulae of 4th degree of the Eq. (1)
at µ = 1, 2, . . . , 20 and �t = 0.001, 0.002, . . . , 0.01 step,
respectively. The first 10,000 steps of these are dumped
due to the initial dependency, and the left 1,200 steps are
acceptable as a numerical solution. Ten numerical solutions
are calculated for each video clip. The total locus length Xs
and the area of sway Y s are also estimated from the numer-
ical solutions as well as the analysis of stabilograms mea-
sured in this study. Stabilograms resulted from the numer-
ical solutions are evaluated by the residual sum of squares
as
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where square roots are calculated to adjust the dimension
and scale difference between the total locus length and the
area of sway. We herein assume that the stabilograms re-
sulted from the numerical solutions are well reproduced at
the coefficient condition µ�t to minimize E in Eq. (4).


