Algebraic Construction of Spherical Harmonics

Fig. 3. Precise form of |z >.
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Fig. 4. Forms of the / = 1 members.

This comes from Eq. (70) and Fig. 1, later explicitly shown
in Fig. 4. From Egs. (72), (73) and (74), we have

<0 =0ualz >= Acosa, (75)
where the constant A is given by A =< 6 = 0|z > and we

set A to be real and positive.
Then the wave function can be written as

Y1.(0,¢) =<0, ¢|z >= Acosé. (76)
To illustrate this, let r = |Y; (6, ¢)|. Then
r:Af (z > 0), r:—A§ (z < 0).
Then we have
W4y EA/)P=(A)2)% forz<0.  (77)

From Eq. (76), the two spheres with centers (0, 0, A/2)
and (0,0, —A/2) have opposite phases. Thus, we show
them with different contrast in Fig. 3.

To conclude this section, we show all the forms of the
! = 1 members i.e., the |[x >,|y >, and |z > states, and
their relations in Fig. 4, as obtained from Egs. (69), (70)
and (77).
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5. [ =2 (d-state) Case
Next we consider the [ = 2 case. The matrix elements of
the angular moment can be calculated as

[Lilww =< 2.m|L;2,n >, (j=x,y,2) (18
with the notation
1 0 0
0 1 0
2,2>= (0|, 121>= 0], 120>= | 1],
0 0 0
0 0 0
0 0
0 0
2,-1>= |0}, 12,-2>=]0 (79)
1 0
0 1
Then we have the explicit matrix forms
01 0 0 0
1 0 +6/2 0 0
L,= | 0+v6/2 0 6/20]|, (80)
0 0 V6/2 0 1
00 0 1 0
0 -1 0 0 0
1 0 —v/6/2 0 0
Ly=i |046/2 0 —v6/20 |, @8
0 0 6/2 0 —1
0 0 0 1 0
2000 0
0100 0
L,=|0000 0 (82)
000—1 0
000 0 —2

Then the rotation matrices around the x, y, and z axes
are calculated by the Taylor expansion of the matrix-valued
exponents, the same way as the case of / = 1:

AiB CiD E
iB F iG H iD

e"x¢ = | CiGJiG C |, (83)
iD HiG F iB
E iD C iB A
A B —-C -D E
-B F G —H -D

e = | -c-G J G —C|, (84)
D -H-G F B
E D —-C -B A
e 000 0
0 ¢0 0 0

e et — o o100 o0 |, (85)
0 0 0e 0
0 0 0 0 et2¢




