

Fig. 1. Conduction band model ε_k for $k_y = 0$.

Fig. 2. Magnetic ordered structures of $\langle S_n \rangle$: (a) ferromagnet (Q = 0, $\theta = \pi/2$); (b) helix ($Q \neq 0$, $\theta = \pi/2$); (c) cone ($Q \neq 0$, $0 < \theta < \pi/2$); (d) ferromagnet ($Q \neq 0$, $\theta = 0$).

with a cone angle θ and a helical wave vector \boldsymbol{Q} along the k_z axis as shown in Fig. 2 [3],

$$\langle S_n \rangle = \langle S \rangle (\sin \theta \cos \phi_n, \sin \theta \sin \phi_n, \cos \theta).$$
 (5)

where $\phi_n = (\mathbf{Q} \cdot \mathbf{R}_n)$ is the turn angle. This cone structure becomes the helical structure for $\theta = \pi/2$ and the ferromagnetic structure for $\theta = 0$ or $\mathbf{Q} = \mathbf{0}$.

If there is no crystalline anisotropy, the cone axis can be in any direction. For an anisotropy of easy plane the cone axis is the *c*-direction while for an anisotropy of easy *c*-axis, the situation is more complicated [5,20].

For the first transformation the local axes (ξ_n, η_n, ζ_n) are introduced at each site \mathbf{R}_n , where ζ_n is defined to be along the direction of the local moment $\langle \mathbf{S}_n \rangle$, ξ_n along the direction perpendicular to both ζ_n and z axes, and η_n along the direction perpendicular to ζ_n and η_n axes as shown in Fig. 3. Those unit vectors $\mathbf{e}_{n\xi}$, $\mathbf{e}_{n\eta}$, $\mathbf{e}_{n\zeta}$ are given by

$$e_{n\xi} = (\cos\theta \cos\phi_n, \cos\theta \sin\phi_n, -\sin\theta), e_{n\eta} = (-\sin\phi_n, \cos\phi_n, 0), e_{n\zeta} = (\sin\theta \cos\phi_n, \sin\theta \sin\phi_n, \cos\theta).$$
(6)

Fig. 3. Local coordinate axes (ξ_n, η_n, ζ_n) .

Hence the *f*-spin operator $S_{n\xi}$, $S_{n\eta}$, $S_{n\zeta}$ are defined by

$$\mathbf{S}_n = S_{n\xi} \ \mathbf{e}_{n\xi} + S_{n\eta} \ \mathbf{e}_{n\eta} + S_{n\zeta} \ \mathbf{e}_{n\zeta}. \tag{7}$$

The unperturbed Hamiltonian H_0 is diagonalized by the transformation,

$$A_{\boldsymbol{k}-} = a_{\boldsymbol{k}\uparrow} \cos\theta_{\boldsymbol{k}} + a_{\boldsymbol{k}-\boldsymbol{Q}\downarrow} \sin\theta_{\boldsymbol{k}} A_{\boldsymbol{k}+} = -a_{\boldsymbol{k}\uparrow} \sin\theta_{\boldsymbol{k}} + a_{\boldsymbol{k}-\boldsymbol{Q}\downarrow} \cos\theta_{\boldsymbol{k}}$$
(8)

with

$$\cos(2\theta_{k}) = \frac{\varepsilon_{k} - \mathbf{Q} - \varepsilon_{k} + 2y}{\sqrt{(\varepsilon_{k} - \mathbf{Q} - \varepsilon_{k} + 2y)^{2} + 4x^{2}}}$$
(9)

where $0 \le \theta_k \le \frac{\pi}{2}$ and

$$x = I\langle S \rangle \sin \theta, \quad y = I\langle S \rangle \cos \theta.$$
 (10)

After these two transformations, the Hamiltonian H_1 is rewritten as

$$H = H_{0} + H_{1}$$

$$H_{0} = \sum_{\boldsymbol{k}\mu} E_{\boldsymbol{k}\mu} A^{\dagger}_{\boldsymbol{k}\mu} A_{\boldsymbol{k}\mu}$$

$$H_{1} = -IN^{-1} \sum_{\boldsymbol{k}} \sum_{\boldsymbol{k}'} \sum_{\boldsymbol{n}} e^{i(\boldsymbol{k}-\boldsymbol{k}') \cdot \boldsymbol{R}_{n}}$$

$$\times (A^{\dagger}_{\boldsymbol{k}-} A^{\dagger}_{\boldsymbol{k}+})(\sigma_{-}(\boldsymbol{k}, \boldsymbol{k}')S_{n+}$$

$$+\sigma_{+}(\boldsymbol{k}, \boldsymbol{k}')S_{n-} + \sigma_{\zeta}(\boldsymbol{k}, \boldsymbol{k}')S_{n0})$$

$$\times \begin{pmatrix} A_{\boldsymbol{k}'-} \\ A_{\boldsymbol{k}'+} \end{pmatrix}$$

$$(11)$$

where the new dispersion energy of the conduction electron E_{ku} is given by (see Fig. 10)

$$E_{k\pm} = \frac{1}{2} \left[\varepsilon_{k} + \varepsilon_{k-Q} \\ \pm \sqrt{(\varepsilon_{k-Q} - \varepsilon_{k} + 2y)^{2} + 4x^{2}} \right].$$
(12)

The *f*-spin operators $S_{n\pm}$ and S_{n0} are

$$S_{n\pm} = S_{n\xi} \pm iS_{n\eta}, \quad S_{n0} = S_{n\zeta} - \langle S \rangle, \quad (13)$$

and the new spin matrices $\sigma_{\pm}(\mathbf{k}, \mathbf{k}')$ and $\sigma_{\zeta}(\mathbf{k}, \mathbf{k}')$ operating on the pseudo spin \pm in $A_{\mathbf{k}\pm}$ are

$$\sigma_{-}(\mathbf{k}, \mathbf{k}') = \frac{1}{2} [\sigma_{3} \sin(\theta_{\mathbf{k}} + \theta_{\mathbf{k}'} - \theta) + \sigma_{1} \cos(\theta_{\mathbf{k}} + \theta_{\mathbf{k}'} - \theta) + \sigma_{1} \cos(\theta_{\mathbf{k}} - \theta_{\mathbf{k}'}) + 1 \sin(\theta_{\mathbf{k}} - \theta_{\mathbf{k}'}) + 1 \sin(\theta_{\mathbf{k}} - \theta_{\mathbf{k}'})],$$

$$\sigma_{+}(\mathbf{k}, \mathbf{k}') = \sigma_{-}(\mathbf{k}', \mathbf{k})^{\dagger},$$

$$\sigma_{\zeta}(\mathbf{k}, \mathbf{k}') = \sigma_{3} \cos(\theta_{\mathbf{k}} + \theta_{\mathbf{k}'} - \theta) - \sigma_{1} \sin(\theta_{\mathbf{k}} + \theta_{\mathbf{k}'} - \theta),$$

$$(14)$$