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Table 1. Spin values S, reduced crystal-field energy Ṽ = V 0
2 J 2/E f ,

reduced c- f exchange energy �0 at 0 K, and reduced life-times �’s:
�(TN ) at TN , �(TC ) at TC , �0 at 0 K. E f = 0.24 eV, I = 0.097 eV and
k̃a = 1.8. See Eq. (20).

S Ṽ �0 �(TN ) �(TC ) �0

Gd 7/2 – 1.4 – 0.40 0.20

Tb 3 9.3 1.2 0.30 0.29 0.15

Dy 5/2 10.4 1.0 0.25 0.18 0.15

Ho 2 3.3 0.8 0.20 0.10 0.10

Er 3/2 -6.3 0.6

Tm 1 -12.3 0.4

As v1 is estimated to be 3.2 × 10−7 cm/s and the ratio
v2/v1 is to be about 0.25 from the band calculation of Dy
[6], C is estimated to be about 300. Hence at T = 0,
the spin-wave constant D1 is estimated to be 0.0125 or
0.0147 eVÅ−2 and the maximum magnon-energy ωmax =
2S J+(0) to be 14.1 or 15.7 meV for � = 0 or 0.2, respec-
tively. The experimental values of D1 and ωmax are 0.0245
eVÅ−2 and 14.3 meV, respectively [10]. A discrepancy be-
tween those two values of D1 should be due to neglect of
the other part of Fermi surfaces in the present model. By as-
suming that the value of � is 1.4 or 1.0, and the value of �

is 0.2 or 0.3 for T/TC = 0 or 0.7, respectively, we can cal-
culate magnon dispersions of ferromagnetic Gd and com-
pare those with the experimental dispersions as shown in
Fig. 15 [10]. From the above parameters the characteristic
wavenumber Qc = 2E f /v1 is estimated to be 0.21[2π/c],
where c is the lattice constant along the c-axis. The anomaly
of temperature dependence of the magnon dispersions in
the region of qz < Qc is explained by the softening of the
magnon energies. The reason is that, as mentioned in Ref.
[20], decreasing � or with increasing temperature, the fer-
romagnetic state passes near the ferro-cone or ferro-helix
boundary (see Fig. 14). Hence we may expect that the soft-
ening of the magnon dispersion results in an anomalous de-
crease of the magnetization [31]. A discrepancy in large qz

region should be due to neglect of effects of other Fermi
surfaces, the k-dependence of the c- f exchange matrix el-
ement I and the zone boundary effect [32].

Secondly we consider the magnon dispersion of Ho in
the helical phase. In the helix, the spin-vectors 〈 Sn〉 rotate
as their positions Rn advance in the direction of Q0, and
are parallel in a particular basal plane perpendicular to the
c axis due to the axial crystal-field-anisotropy. Hence the
magnon energy at qz = Q0 becomes finite. Figure 16 shows
observed magnon dispersions at 50 K and 78 K [14]. The
effect of the axial anisotropy should be introduced to the
frequency ω( q) as

ω( q) =
√

[F1( q) + 2SB] F2( q) (73)

where S is the total angular momentum and B the effective
axial-anisotropy constant. The constant B is given by (see
Appendix D)
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in which Vl
0 is the axial-anisotropy constant of the l-th or-

der. From both experimental fit and theoretical fit by as-

Fig. 14. Phase diagram for V = 0 and for some values of �; 0.1, 0.2,
0.3 and 0.4 after Ref. [20]. Full curves represent the second-order
transition and broken curves the first-order transition. For � = 0.4,
the cone region disappears. Vertical line from a to c is an expected
temperature-dependence of the Gd state. � = 0.2 for a, 0.3 for b, and
0.4 for c. Full lines denoted by Gd-Y and Gd-La represent the state of
the Gd1−x Yx and Gd1−x Lax alloys at T = 0 K, respectively.

Fig. 15. Magnon dispersions of Gd in the c direction: Curve A at 78 K,
and curve B at 232 K; Broken curves by experiment, and full curves by
theoretical fitting.

suming the point-charge model, V2
0, V4

0 and V6
0 have been

evaluated to be 2.66, 0.414 and -0.539 meV, respectively

[1]. The temperature dependence of Vn
0(T ) is given by the

relation

Vn
0(T ) = Vn

0 σ n(n+1)/2,

and the reduced magnetization σ = 〈S〉/S is derived from
the neutron scattering in Ho [33]. By using Eq. (74) and the

relation of Vn
0(T ), the value of B is estimated to be 0.032

meV at 50 K and 0.023 meV at 78 K.
The model-parameters k̃a and �0 are assumed to be 1.8

and 0.6, respectively. These values can reproduce the tem-
perature dependence of helical Q0 [20, 34], but this value
of �0 is a little smaller than the value in Table 1. By use
of an equation �/�0 = σ , � is 0.53 at 50 K and 0.4 at
78 K. From the fact that the wavenumber Q0 approaches
0.27 [2π/c] at TN = 133 K, E f /v1 is estimated to be 0.14
[2π/c]. For simplicity we put � = 0.


