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Fig. 16. Magnon dispersions of helical Holmium along the c direction:
Full curves at 50 K, and broken curves at 78 K; Thick curves for the
experiment and thin curves for the theory.

Table 2. Fitting parameters J0 and B with values of ± errors for helical
Ho.

T [K] J0 [meV] B [meV]

78 2.54 +0.31
−0.11 0.0369 −0.0040

+0.0017

50 3.02 +0.31
−0.11 0.0346 −0.0051

+0.0067

Using the above model parameters and two parameters J0

and B, we can calculate the magnon dispersion for helical
Ho. The parameters J0 and B are chosen so as to be the
mean absolute difference between those two dispersions for
qz < 0.35 [2π/c] less than 0.05 meV. Table 2 gives the
values for J0 and B with the values of errors. Figure 16
shows the comparison between the calculated dispersions
and the experimental dispersions [14].

The most prominent feature that the magnon energies for
qz < Q increase with increasing temperature is explained
by the temperature dependence of � = σ�0, that is, the
non-linear effect of the c- f exchange interaction. The ef-
fective axial-anisotropy constant in Table 1 is consistent
with the values estimated above [1] but its temperature de-
pendence is too weak.

Thirdly let us consider the magnon dispersions in the he-
lical phases of Tbx Y1−x alloys (0.05 < x < 0.85) whose
moments are confined in the c plane [35] (see Fig. 17).
When the mean-field-approximation is applied to those al-
loys, the magnon dispersion is given by Eq. (73), provided
that S is replaced by x S.

For Tb the model parameter k̃a is assumed to be 1.8
from Table 1, and �0 to be 1.0 so as to reproduce the x
dependence of Q near T = 0 K [35]. The life-time �

is taken to be zero for simplicity. Note that the value of
�0 is a little smaller than the value in Table 1 due to the
assumption of � = 0. From the fact that the wavenumber
of Q0 approaches 0.28 [2π/c] as x tends to zero, E f /v1 is

Fig. 17. Magnon dispersions along the c axis of helical phases of Tbx Y1−x

alloys at 4.7 K. Experiments: ◦, x = 0.1; •, x = 0.5; �, x = 0.76.
Theory: Chain curve, x = 0.1; broken curve, x = 0.5; full curve,
x = 0.76.

Table 3. Fitting parameters J0 and B for the magnon dispersions of
Tb1−x Yx alloys.

x J0 [meV] B [meV]

0.1 1.88 0.312

0.5 6.59 0.337

0.75 8.27 0.314

estimated to be 0.14 [2π/c].
Because the experimental data are so much scattered,

we determine two fitting parameters J0 and B so as to
make the calculated magnon-energies provide the fit to the
experimental data both at qz = Q0 and at qz = 2π/c. Table
3 shows the values of fitting parameters. The values of B
are in good agreement with the value for pure Tb, 0.30 meV,
estimated by Kasuya [1]. The values for J0 do not increase
linear but concave as x increases. This fact indicates that
the conduction band has not the simplified linear-dispersion
of kz in Eq. (3) but a usual quadratic-dispersion. The reason
is that the bottom of the conduction band plays an important
role in the case of �0 = 1.0. Note that the same discrepancy
is also observed in the temperature dependence of magnon
dispersions of helical Ho in Fig. 16. The anomaly of the
concentration dependence of the magnon energies which
occurs for q < Q described as the feature (c) in Sec. 1 is
naturally explained by replacing � by x�0, that is, by using
the non-linear c- f exchange model as shown in Fig. 17. The
calculated dispersions show a softening around qz = 0.56
[2π/d] due to the instability of the formation of the second-
order harmonic. Actually this instability is observed in the
case of x = 0.1 while in the other cases smeared by the
life-time effect.

Finally, we consider magnon dispersions of conical
phase. The most striking feature is that the magnon veloc-
ity for qz > 0 is different from one for qz < 0 as shown in


