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Abstract.  One special case of Arak, Clifford and Surgailis’ 1993 point-based polygon
models for random graphs yields an isotropic random tessellation of convex polygons,
with all vertices T-vertices. It is shown that its polygon distributions coincide with those
of the random tessellation determined by Poisson isotropic random lines in the plane, for
which all vertices are X-vertices (cf. Fig. 4). This surprising property extends to general
orientation distributions, e.g. to rectangular tessellations stemming from a two atom
distribution. Applying this property, it is shown that a wide variety of distinct random
tessellations obtained from these two by superposition, nesting, etc. possess those very
same polygon distributions.

1.  Introduction and Summary

To begin (Sec. 2), basic properties of homogeneous Poisson lines P in the plane R2 with
orientation distribution Θ, and the random tessellation � of convex polygons they
determine, are developed. Stemming from P, next (Sec. 3) the stochastic process A(C) of
interconnected line segments—“I-segments”—with orientation distribution Θ within an
arbitrary convex domain C of R2 is specified, employing an advancing fixed orientation line
(AFOL). The probability element of its realisation within C is determined, thus incidentally
showing that the orientation of the AFOL is immaterial for this stochastic construction.
Moreover A(C) is shown to be consistent in the sense that, for any C′  � C, the restriction
of A(C′) to C is stochastically equivalent to A(C). A complete stochastic analysis of the I-
segments of A(C) is carried out.

Ignoring edge effects, A(C) has the effect of partitioning C into a random tessellation
�(C) of convex polygons, with all vertices being T-vertices, the intersections of pairs of
I-segments. It is shown that the probability element for any given convex polygon
coincides with the corresponding element for �, so demonstrating that their polygon
distributions are identical.
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To conclude (Sec. 4), a wide variety of distinct new random tessellations, generated
from these two (�, �) by superposition, nesting and/or partition and restitution of Θ, are
shown to possess the same “Poisson” polygon distributions.

Certain of our theory duplicates that of ARAK et al. (1993), but since the tessellations
of interest are but a special case of their rather complex general model, our specific and
hence simpler self-contained treatment may be valuable as a simpler speedy access to this
area for the general reader.
History.  This paper has an interesting history. In MACKISACK and MILES (1996) we
investigated several models for homogeneous rectangular tessellations in R2 with exclusively
T-vertices, the main one of which—Gilbert’s—proved to be rather intractable. Subsequent
to that, we arrived at a fully tractable such tessellation with rather nice properties. This was
presented at meetings in 1995 (MACKISACK and MILES , 1996) and 1997 (MILES, 1998), at
the first of which its similarity to one of the models of ARAK et al. (1993) was pointed out
to us. The only difference transpired to be our two atom orientation distribution versus their
isotropic one. In fact our theory was found to extend to the case of arbitrary orientation
distributions, as presented here. Thus we are happy to acknowledge the original presentation
of this splendid model in ARAK et al. (1993). Our most important contribution, in this paper,
is an analysis of its specific properties, with identification of its distributions as those of
the classic random tessellation determined by Poisson lines in R2.

2.  Anisotropic Poisson Line Process in the Plane

First we specify (infinite unoriented) lines in the plane R2 by

G G h h= ( ) −∞ < < ∞ ≤ <( ),    ,  ,θ θ π0

where (h, θ) are polar coordinates of the perpendicular from the origin O to the line. The
relevant invariant integral geometric density (SANTALÓ, 1976) is dG = dhdθ. We write Pλ
(0, d) (d = 1, 2, ...) for a Poisson point process of intensity λ  in d-dimensional euclidean
space Rd (notationally this conforms to “ P(s, d)” for Poisson s-flats in Rd, cf. MILES

(1971)). Then we define the anisotropic Poisson line process

P P≡ ( )τ
Θ 1 2,

in R2 of intensity τ and orientation distribution Θ by {Gi}, i.e. {hi, θi}, where
(i) {hi} is Pτ(0, 1) on R1; and, independently,
(ii) {θi} are independent identically distributed from Θ.
Thus {hi, θi} is, in general, an inhomogeneous Poisson point process in the strip –∞

< h < ∞, 0 ≤ θ < π. The isotropic case corresponds to Θ uniform on [0, π), in which case
{hi, θi} is (homogeneous) Pτ/π (0, 2) in the same strip. The distribution Θ is quite general,
but we exclude the degenerate case in which its probability is concentrated on a single point
(in which case no line/line intersections may occur).

The basic “prob el” (probability element) applicable to P is
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dp dp h

dh d

dh d

≡ ( )
= ( ){ }
= ( )

,

Pr ,

θ

θ

τ θ

there is a line of  within P

Θ

(=(τ/π)dhdθ in the isotropic case). In what follows we shall make much use of the
“complete independence” of Poisson processes. It is of interest that the (isotropic) P occurs
as a limiting example of ARAK et al. (1993)’s general model (their Case 1).

We next develop some of the basic properties of P.
P is homogeneous.  That is, P is stochastically invariant under arbitrary translations in R2.
This stems from its construction, specifically the homogeneity of {hi}, and {θi} being
independent identically distributed.
Hitting distributions for P.  Let C be a bounded convex domain in R2 and

  
V C h G h C( ) = ( ) ( ) ∩ ≠{ }, : , ,θ θ �

so that the number of lines of P hitting C equals the number of points {hi, θi} within V(C),
which is Poisson distributed, with mean value

dp dh d

w d

V C V C

C

( ) ( )∫∫ ∫∫

∫

= ( )

= ( ) ( )

τ θ

τ θ θ
π

Θ

Θ
0

where wC(θ) is the width of C at orientation θ

≡ ( )τC ,    ;say 1

i.e. C  is the Θ-weighted mean width of C.
Examples.  (i) In the isotropic case C  = S(C)/π, where S denotes perimeter; (ii) For a disc

Q(q) of radius q, Q q( )  = 2q for all Θ.
For a line segment L of length l and orientation φ,

L l= ( ) ( )χ φ 2

where

χ φ θ φ θ
π( ) ≡ ( )∫ , Θ d
0

and
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θ φ θ φ, sin .≡ −( )

Note χ(φ) = 2/π in the isotropic case.
Line sections of P.  Consider the point process section of P by an arbitrary line G(b, φ) with
orientation φ. The prob el dp may alternatively be expressed in terms of (u, θ), where u
measures length along G(b, φ) from some arbitrary origin, by

dp dh d

du d

= ( )
= ( ) ( )

τ θ

τ θ φ θ

Θ

Θ, , 3

from which we conclude that the section is a P(0, 1) with intensity τχ(φ); the orientation
distribution of the line through each point of this process being given by

Pr , , .d b dθ φ θ φ θ{ } ∝ ( ) ( )Θ 4

These two properties permit a stochastic construction of P with respect to any given G(b,
φ). In fact, a given line of P itself also intersects the rest of P in exactly the same way, i.e.
same point process and (independent) orientations.
The planar point process P|P of X-vertices of P.  That is, the aggregate of line/line
intersection points for P. Appealing to Poisson independence, the joint P prob el for two
lines in R2 is

dp dp dh d dh d

da d d

1 2 1 1 2 2

2
1 2 1 2 5

= ( ) ⋅ ( )
= ( ) ( ) ( )

τ θ τ θ

τ θ θ θ θ

Θ Θ

Θ Θ, ,

where da is an area element of R2. It follows that the intensity of P|P is

ρ τ θ θ θ θ
ππ

P = ⋅ ( ) ( ) ( )∫∫
1

2
62

1 2 1 200
, ,Θ Θd d

the factor 1/2 stemming from the double representation pertaining; moreover, the prob el
of the joint orientation distribution of the two lines through a uniform random point of P|P
is

∝ ( ) ( )θ θ θ θ1 2 1 2, .Θ Θd d

Note ρP = τ2 in the isotropic case.
The random tessellation �.  P has the effect of partitioning R2 into an aggregate � of
random convex polygons—a random tessellation—the characteristics of which conform to
(almost sure ergodic) distributions (MILES, 1973), e.g.
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(i) the distribution of in-radii is exponential (2τ);
(ii) the conditional distribution of D  for a uniform random member D of �, given the

number N of its sides or vertices, is Γ(N – 2, τ), i.e. the distribution of the sum of N – 2
independent exponential (τ) random variables.

Many (ergodic) moments are also known, especially in the isotropic case (MILES,
1986). Our main interest in this paper is in this and various other such random tessellations
of R2.
The probability element for polygonal cells of �.  Consider an arbitrary convex polygon
D in R2, which suppose has N sides or vertices —i.e. a convex N-gon. We may represent
D by its line segment sides Li (i = 1, ..., N) or, more simply, by the lines containing them:

D = D(G1, ..., GN).

The corresponding P prob el, by complete Poisson independence, is

  

Pr

.

dD dG dG

dG dG and D

dp dp

N

N

i

N

V D

{ } = ( ){ }
= {

( ) }

=






−( )∏ ∏
( )

Pr there is a cell of  within ,  ...,   

Pr there are lines of  within each of

,  ...,      there are no other  lines of  hitting 

� 1

1

1

1

P

P

Again, by Poisson independence,

1 −( ) = − ( ){ }
= −( )

( ) ( )∏ ∫∫dp dh d

D

V D
V D

exp

exp .

τ θ

τ

Θ

Thus we have the basic prob el

Pr expdD D dpi

N

{ } = −( ) ( )∏τ
1

7

for �.

3.  ACS (Arak-Clifford-Surgailis) Random Tessellations

Specification of the line segment process A(C) within an arbitrary bounded convex
domain C. This specification is best explained by way of a typical realisation (Fig. 1).
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Thus the realisation comprises a number of interconnecting line segments within C.
Each end of each such segment is either a T-junction with another segment or an
intersection with the boundary ∂C of C. When terminated by T-junctions at both ends, we
refer to these segments as I-segments (MACKISACK and MILES, 1996).

A AC C( ) ≡ ( )τ
Θ

is now specified in terms of the Poisson line process P = Pτ
Θ discussed above. Consider a

fixed orientation line G(t, φ). Allowing t to increase from –∞ to ∞, we have an advancing
fixed orientation line (AFOL); it may be useful to think of t as a time variable. Let t0 < t1
specify the tangent positions of G(t, φ) with C. Let P(C) denote those lines of P which
intersect C, and Rφ

–(C) denote the ray parts of them extending from t = –∞ to their first
contact with C. Aφ(C) stems from the extension of the members of Rφ

–(C) into C, subject
to the following unfolding random mechanism within C, as t increases from t0 to t1.
(A1) Within (t, t + dt) any advancing (i.e. relative to G(t, φ)) segment L(ψ) with orientation
ψ may “give birth” to a new advancing segment, having prob el

1

2 0 1dp t t t   ,≤ ≤( )

i.e. with a prob el relative to L(ψ) of (1/2)[τdu〈ψ, θ〉Θ(dθ)], where u measures length along
L(ψ) (cf. Equations (3) and (4) above).
(A2) If within dt any two advancing segments meet, then a fair coin toss (probabilities 1/
2, 1/2) determines which of them advances and which is blocked (“dies”).
One minor restriction is necessary: the orientation φ of the AFOL must not coincide with

Fig. 1.  Illustrative realisation of A(C).



Random Tessellations with Common Distributions 7

a positive atom of Θ’s probability. This completes the specification of Aφ(C). In the
isotropic case it is the model presented in Case 3 and figure 6 of ARAK et al. (1993).

It is also useful to define the combined line/line segment process PA(C) over R2 as
follows. Suppose advancing line segments within C reaching ∂C extend outside C as rays
to t = ∞, the union of which denote by Rφ

+(C). Then, letting Pc(C) denote the lines of P not
intersecting C, define

PAφ(C) = Aφ(C) � Rφ
–(C) � Rφ

+(C) � Pc(C).

Thus, as t increases from –∞, PAφ(C) coincides with P up to t0, but thereafter is modified
by the presence of C. It is a segment process within, and a line process outside, C. The reader
should be satisfied as to how, for example, Fig. 1 is sequentially generated by the AFOL;
and that it could well have been thus generated with respect to (almost) any φ-value in [0,
π). Ignoring edge effects near ∂C, Aφ(C) has the effect of partitioning C into an aggregate
�φ(C) of convex polygons. Likewise PAφ(C) generates the random tessellation ��φ(C) of
R2 (with no such edge effects!).
Probability element for a given configuration of Aφ(C).  Suppose the given configuration,
e.g. that of Fig. 1, comprises n line segments:

B = (L1, ..., Ln)

where Li (�line Gi) has length li and orientation ψi. We now derive its prob el Pr{dB},
making abundant use of the complete Poisson independence prevailing. Thus Pr{dB} stems
from the product of the following individual independent prob els:

(a) Πdpi  over all advancing P lines entering C (Rφ
–(C));

(b) Π(1 – dp)  over all advancing rays entering C which don’t “carry” a line of P;

(c) Π 1

2
  over all blocks occurring within C;

(d) Π





1

2
dpj   over all births occurring within C; and

(e) Π −



1

1

2
dp   over all possible births which don’t take place within C.

In other words

Pr exp exp ,dB dp dp dp
m

V C V L

n

i

n

i
{ } = 



 −



 −













( )( ) ( )∫∫ ∫∫∏ ∏1

2

1

2
8

1 1

where m is the total number of T-junctions in B. Applying Eq. (1), this reduces to

Pr exp exp .dB C L dp
m

i

n

i

n

{ } = 



 −( ) −







( )∑ ∏1

2 2
9

1 1

τ τ
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Since this is independent of the fixed angle φ of the AFOL, we have the
Optional Orientation Theorem. Aφ(C) does not depend upon φ, and hence may be written
A(C). Similarly we may write �(C), PA(C), etc.
Corollary.  Suppose T is any given tangent to C and H(T) is the half-plane bounded by T
which does not contain C. Then PA(C) within H(T) is stochastically equivalent to P within
H(T).
Consistency.  Suppose C, C′  are bounded convex domains with C � C′ , and A(C|C′) denotes
the restriction of A(C′) to C.
Consistency Theorem.  A(C|C′) is stochastically equivalent to A(C), for all C′  � C.
Proof.  Suppose C is a convex N-gon, let L be one of its sides, H(L) be the half-plane
bounded by L containing C, and C″  = H(L) � C′  (Fig. 2). Now, generating A(C) in the
arrowed direction orthogonal to L, as is allowable by the Optional Orientation Theorem, we
see that A(C″ |C′) is s.e. (stochastically equivalent) to A(C″ |C″) and hence A(C|C′) is s.e.
to A(C|C″). This argument may be repeated another N – 1 times, to show that A(C|C′) is s.e.
to A(C, C) = A(C). Clearly this result extends from convex N-gons to general bounded
convex C.
Corollary.  A(C) is homogeneous in the sense that, if C1 � C, C2 � C with C1, C2 translates
of each other, then A(C1|C) is stochastically equivalent to A(C2|C), i.e. after translation.
Arbitrary line section of A(C).  Suppose the line G (of orientation φ) partitions C into the
two convex subdomains C1, C2. Write a1, a2 for the opposite advance directions orthogonal
to G, ai being through Ci towards G (i = 1, 2). Now, by the stochastic construction, the
section by G of A(C) is s.e. to the section by G of A(C2) via the advance a2. But, by the
Optional Orientation Theorem, this is s.e. to the section by G of A(C2) via the advance a1
which, again by the stochastic construction, coincides with the corresponding P result (Eqs.
(3) and (4)), viz. Pτχ(φ) (0, 1).
Probability element for the T-junction vertices of A(C).  By the Consistency Theorem and
homogeneity, we may take as our configuration B a T-junction within C taken as a disc Q(ε)

Fig. 2.  Illustrating the argument leading to the Consistency Theorem.
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of radius ε centred at the T-junction. Let the “top” (horizontal) and “bottom” (vertical) bars
of the “T” lie within lines G1, G2 respectively. Then, by Eq. (9) with m = 1, n = 2, the
corresponding prob el is

1

2 2 1

2

1

2

− ( ){ } −






∑ ∏τ ε τ
Q L dpi iexp .

Going to the limit ε → 0, the desired prob el is

dp dp1 2
1

2
10⋅ ( )

which may be re-expressed by means of Eq. (5). Allowing the top/bottom to be G2/G1, Eq.
(10) is doubled, yielding identity between the P and A values. Thus, writing A|A for the
point process of such T-vertices, geometrical considerations imply that its intensity ρA =
2ρP, ρP being given by Eq. (6).
Geometry of I-segment structures.  Besides I-segments there are also J- and K-segments,
best illustrated by an example (Fig. 3). See also MACKISACK and MILES (1996, Sec. 2). J-
segments are the sides of the polygons of �(C), while K-segments are the common
boundaries of adjacent polygons of �(C). Thus, in Fig. 3, the single I-segment contains five
distinct J-segments (1, 2, 34; 123, 4) and four K-segments (1, 2, 3, 4).

Such a homogeneous random structure engenders certain geometric expectation
identities (MACKISACK and MILES, 1996, Sec. 3). Thus, since each T-junction serves both
as an “intermediate” point and an “end” point,

E{number of T-junctions along a uniform random I-segment} = 2.

Moreover, for their lengths (subject to uniform weighting),

E l E l E lI J K{ } = { } = { } ( )2 3 11.

Fig. 3.  An I-segment, with its associated J- and K-segments.
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Probability element for the I-segments of A(C).  To find the prob el for a given I-segment
occurring within A(C), we proceed as for the T-junction above, but for simplicity omit the
shrinking of a containing convex domain (C) down to the I-segment itself (C0). The
geometry and notation are illustrated in Fig. 3, where the I-segment joins G � G1 and G �
G5 (n = 5) and each of G2, G3 and G4 support a line segment, each of which may lie on either
side of G. Thus the associated configuration

B G G G G Gn n n= ( )±
−

±; , ,  ...,  ,1 2 1

where ± relates to the side of G. Let G = G(h, φ), the orientations of G1, ..., Gn be θ1, ..., θn
and u1, ..., un locate their intersections with G (from some arbitrary origin on G), so the I-
segment length I = un – u1. Then, by Eq. (9),

Pr exp expdB dp dp C Cn

n

i

n

{ } = 











−( ) −



∏1

2 21
0 0τ τ

which, by Eqs. (2)–(4),

= 



 ( )







 − ( )






∏τ φ θ θ τ χ φ

2

3

21

n

i i i

n

dp du d I, expΘ

(2n–2 relations, corresponding to the ±’s). The θi dependences enter in an independent way,
so may be integrated out:

Pr ; ,  ...,  

/ exp

/ exp

dG du du

u u dp du

u u dp du

n

n
n i

n

n
n i

n

1

1
1

1
1

2
3

2

3

{ }

= ( ){ } − ( ) −( )







= ( )( ) − ( ) −( ){ }

∏

∏

τχ φ τ χ φ

κ φ κ φ

where

κ φ τχ φ( ) ≡ ( )3 2/

(=3τ/π in the isotropic case). Thus
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Pr ,  ...,  / exp

exp

exp

du du G u u du

du u u du

u u du

n
n

n i

n

1 1
1

1 2 1 2

3 2 3

3

1

3

1

3

1

3

1

3

{ } = ( )( ) − ( ) −( ){ }

= ( ) ⋅ ( ) − ( ) −( ){ }





⋅ ( ) − ( ) −( ){ }





⋅

∏κ φ κ φ

κ φ κ φ κ φ

κ φ κ φ

κ

M

φφ κ φ( ) − ( ) −( ){ }



−exp .u u dun n n1

This expresses the prob el of such an I-segment in sequential form; save for the angles θi,
which are independent, with the usual prob els ∝〈 φ, θi〉Θ(dθi) (Eq. (4)).

It is natural to couch these prob els in terms of probability distributions. Thus, starting
from G � G1 the successive intersections G � Gi conform to a Poisson process with
intensity κ(φ), the factors 1/3 reflecting the three choices at each intersection: birth, block
and terminate. In other words, the K-segments have exponential {κ(φ)} distributions, and
n has a geometric (1/3) distribution. From these two facts it follows that I has an exponential
{κ(φ)/3} distribution. The condition for a J-segment is that successive probability 1/3
events, birth or block, be the same at all its intersections, from which it follows that the J-
segments have an exponential {2κ(φ)/3} distribution.

As for mean lengths, µI = 2µJ = 3µK, agreeing with the more general result equation
(24) in MACKISACK and MILES (1996)—Eq. (11) above. One may also show that,
associated with a uniform random I-segment,

E{number of J-segments (summed over both sides)} = 4,

E{number of K-segments} = 3.

To summarize, for an I-segment with given orientation φ,

I is exponential 

J - values are exponential 

K - values are exponential 

λ

λ

λ

( )
( )
( )










( )2

3

12

(λ  ≡ κ(φ)/3 or τχ(φ)/2).
To combine these results for all I-segments in a large domain C, one must weight

accordingly. For example, if fφ(X), f(X) are the densities of X = I, J, K then
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f X
f X d

d

f X d d

d d

( ) =
( ) ( ) ( )

( ) ( )

=
( ) ( ) ( )

( ) ( )

∫
∫

∫∫
∫∫

φ
π

π

φ
ππ

ππ

κ φ φ

κ φ φ

θ φ θ φ

θ φ θ φ

Θ

Θ

Θ Θ

Θ Θ

0

0

00

00

,

,
,

the denominator being 2ρP/τ2 = ρA/τ2.
Isotropic case.  Such complexity disappears in the isotropic case, where κ(φ) = 3τ/π. Thus,
for the totality of such segments, I, J and K have exponential distributions with parameters
τ/π, 2τ/π and 3τ/π, respectively.
Probability element for a given N-gon polygonal cell of �(C). The derivation closely
parallels that for I-segments, with the domain C being shrunk down to the N-gon D itself.
To render D as a valid configuration B within C (=D!), at each of its N vertices extend one
(arbitrary) edge outside C. Now Pr{dD} is the product of two factors, obtained as above
(Eq. (8)):

(a) The prob el for the N sides of D is

1

2 1





 ∏

N

i

N

dp .

(b) To take account, in an element of ∂C = ∂D, of:
(i) external P lines not penetrating D: a factor 1 – dp·(1/2);
(ii) no internal births: a factor 1 – (1/2)dp;

the combined effect of which is 1 – dp. The corresponding prob el is the product of this over
all (line segment) secants of D, viz

exp exp .− ( ){ } = −( )( )∫∫τ θ τdh d D
V D

Θ

Combining (a) and (b), and summing over all 2N choices of edge extensions, the required
prob el

Pr exp

exp .

dD dp D

D dp

N
N

i

N

i

N

{ } = 











−( )

= −( ) ( )

∏

∏

2
1

2

13

1

1

τ

τ
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Note that no restriction whatever has been placed here on the P lines blocked by D, and that
it coincides with the corresponding prob el Pr{dD} for � (Eq. (7)). Note also that, as is now
expected, the prob el of J-segments of A(C) with orientation φ (Eq. (12)) coincides with that
of the sides � with orientation φ (Eqs. (3) and (4)).
Rectangular tessellations.  In MACKISACK and MILES (1996) we investigated various
stochastic models of homogeneous rectangular tessellations, in which each cell was an
(aligned) rectangle and, desirably, all vertices were T-vertices. Only after its publication
did we discover what turned out to be Aτ

Θ, with Θ concentrated on two orthogonal atoms:

ξ θ
η θ π

ξ η
 at 

 at 

=
=





+ =( )0

2
1

/
   .

Without a doubt this seems to us to be the nicest and most tractable nontrivial model
possible for a rectangular tessellation. For it,

κ(φ) = 3τχ(φ)/2 = (3τ/2)(ξ |sinφ| + η |cosφ|).

The sides of a uniform random rectangle are independent exponential random variables,
with mean values 1/τξ , 1/τη ; as they are, of course, for the corresponding, but somewhat
trivial, � rectangular tessellation formed by two families of orthogonal random lines.

4.  Further Random Tessellations Derived by Superposition, Nesting, etc.

In the previous section we have seen that the stochastic structures of A(C) (T-
junctions, I-segments, polygons) have precisely the same prob els as those of the
corresponding structures for P in R2. For example, the prob el for the polygon of �
containing O coincides with that of the polygon D of �(C) containing a fixed point of C
(provided D � sufficiently large C). In other words, they have the same stochastic
construction: that which is implicit in the definition of P in Sec. 2. Since C is an arbitrary
bounded convex domain of R2, these considerations beg the question: What can be said
about the empiric distributions of �(Q(q)) as q → ∞ (assuming edge effects near ∂Q(q)
become asymptotically negligible)? Do they coincide with the corresponding limit values
for �(Q(q)) explored elsewhere (MILES, 1964, 1973)? In fact a parallel theory for �(Q(q))
may be set out, the successive steps being similar to those for �(Q(q)). Because of this, and
because its inclusion here would upset the balance of the paper, also rendering it
considerably longer, it is omitted. The interested reader is referred to the cognate references
MILES (1970, 1971, 1974). Thus the empiric distributions of �(Q(q)) converge almost
surely to the same distributions as �(Q(q)), since these limit distributions coincide with the
(identical, i.e. � ~ �) prob els above.
Ergodic bridge.  The ergodic essence of these results is epitomised by an “ergodic bridge”
(MILES, 1995). Write A for area and Z for a general translation invariant continuous
(possibly vector) characteristic of a convex polygon. Then we may write °f(A, Z) for the
joint p.d.f. of (A, Z) for the polygon °D of � containing O. Writing f(A, Z) for the limit
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(ergodic) almost sure p.d.f of (A, Z) for the equi-weighted aggregate of polygons of
�(Q(q)) as q → ∞, we have the basic ergodic bridge relation

° ( ) = ( )
( )

f A Z
Af A Z

E A
,

,
,

where E(A) is the mean value of A with respect to f. This relation stems from the fact that
O is like a “uniform random point” relative to the homogeneous P, so that the “probability”
that it falls in any polygon is ∝  the area of the polygon. It is an ergodic bridge in the sense
that knowledge of °f, depending upon a single polygon for all realisations, interrelates with
that of f, depending (almost surely) upon all polygons for a single realisation. Knowledge
of either determines, in principle, knowledge of the other. Since the prob els Pr{dD} for �
and � coincide (Eqs. (7) and (13)), it follows that °f for � and � coincide; and hence also,
by the ergodic bridge, that f for � and � coincide. For example, the distribution of in-radii
and the conditional distribution of D  given N mentioned in Sec. 2.

By way of illustration, Fig. 4 shows simulations of P, �, and A, � in a square, with
the same τ and Θ values. (We are indebted to Hao He for the A, � simulation.)

Now we have the following stochastic construction equivalent to the definition of P
= Pτ

Θ (1, 2) in Sec. 2. A stochastic construction of °D for either Pτ
Θ or Aτ

Θ is as follows.
Suppose {hi} are the points of a Pτ (0, 1) and {θi} are independent identically distributed
from Θ. Writing Hi for the half-plane bounded by G(hi, θi) which contains O, we have �Hi
is stochastically equivalent to °D. This property is now repeatedly exploited, to exhibit a
wealth of further random tessellations possessing these very same distributions. To ease the

Fig. 4.  Simulations of (i) P, � and (ii) A, � with common intensity τ  and orientation distribution Θ (having
density 4/(5π) for θ ∈  (π/8, π/2) and 14/(5π) for θ ∈  (3π/4, π)). The polygons of � and � have the same
distributions!
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notation in the sequel, we write P[τ, Θ] for Pτ
Θ, A[τ, Θ] for Aτ

Θ and *[τ, Θ] for either.
Superposition.  As an example consider the (independent) superposition

P � A ≡ P[τ1, Θ1] � A[τ2, Θ2]

of these two processes. Since the intersection of two convex polygons is a convex polygon
(or �), we have that P � A determines a tessellation of random convex polygons. Consider
the stochastic construction of °D with respect to P � A. It coincides with that of �Hi(hi,

θi), where {hi} are Pτ τ1 2+ (0, 1) and each θi is chosen from

Θ

Θ
1

2

 with probability ,  and

 with probability 

τ τ τ

τ τ τ
1 1 2

2 1 2

/

/ ;

+( )
+( )







which is equivalent to selecting each θi from

Θ Θ Θ= +
+

τ τ
τ τ

1 2

1 2

1 2 .

Thus, for example, °D{P[τ1, Θ1] � A[τ2, Θ2]} is stochastically equivalent to °D{P[τ1 + τ2,
(τ1Θ1 + τ2Θ2)/(τ1 + τ2)]} with, by the ergodic bridge, a corresponding result for the ergodic
equi-weight distributions. This result generalises immediately to the superposition of n
mutually independent processes, each of which is either P or A:

° ∧ ∗ [ ]{ } ° ∗ ( )[ ]{ }∑ ∑ ∑D Di i i i i i iτ τ τ τ, , .Θ Θ is stochastically equivalent to 

Nesting.  Associate with each cell Dj of *1[τ1, Θ1] a realisation rj of *2[τ2, θ2], the rj being
mutually independent. Let *1{*2} comprise *1[τ1, Θ1] together with rj within each of its
Dj’s, i.e. *2 nested within *1. Clearly this nesting may be iterated, to yield

*1...n ≡ *1{*2{...{*n}...}},

and the above argument extends, to show

° ∗{ } ° ∗ ( )[ ]{ }∑ ∑ ∑D Dn i i i i1... , , is stochastically equivalent to τ τ τΘ

with a corresponding ergodic result for the equi-weighted tessellations.
Intermediate case.  These results apply also to the intermediate case, in which each cell of
*1 is selected (independently) in category j of m categories with probability pj ( j = 1, ...,
m). The nesting involves taking the single realisation rj of *2 within all category j cells ( j
= 1, ..., m). The details are left to the reader.
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Partition and restitution of Θ.  Nesting may be combined with partition of Θ to yield further
useful results. We illustrate with a simple example. Suppose Θ123 comprises three equal
atoms of 1/3 at 0, π/3 and 2π/3; Θ12 comprises two equal atoms of 1/2 at 0, π/3 (etc.); and
Θ1 comprises a single atom of 1 at 0 (etc.). Then the polygons of the following tessellations
have the same distributions:

∗ [ ]
∗ [ ] ∗ [ ]{ } ( )
∗ [ ] ∗ [ ] ∗ [ ]{ }{ } ( )

τ

τ τ

τ τ τ

,

/ , / ,    

/ , / , / ,    .

Θ

Θ Θ

Θ Θ Θ

123

12 3

1 2 3

single nest

double nest

2 3 3

3 3 3

The reader might care to sketch realisations of these tessellations. Clearly a wealth of
differing such tessellation models possess common “Poisson” polygon distributions.

5.  Closing Remarks

A within non-convex domains.  Suppose we replace the convex C by a pretty general
bounded domain X, e.g. one bounded by a simple closed continuous curve, or by a disjoint
union of such curves. Again an AFOL may be advanced across X, applying the A
mechanism (A1), (A2) of Sec. 3 within X and simple ray extension in Xc. This results in a
line segment process within X and a line process within Xc, the net result being a partition
of R2 into a random tessellation of convex polygons. The entire above theory extends in
straightforward manner, the key again being prob el expressions. For example, the prob el
for a given N-gon, even straddling ∂X = ∂Xc, is unchanged! The manifold possible choices
of X generate a very general range of tractable stochastic models conforming to the classic
Poisson polygon distributions.
Dimensional extensions?  P, � may be effortlessly extended to Poisson hyperplanes in Rd,
P(d – 1, d), with generated Poisson polytopes �j; and more generally to Poisson s-flats in
Rd, P(s, d), (0 ≤ s < d) (MILES, 1971, 1974). However, there seems to be no corresponding
extension possible of A to higher dimensionalities, e.g. by advancing a fixed orientation
plane in R3, against a background of Poisson lines P(1, 3) or planes P(2, 3). There appears
to be no mechanism for such lines or planes to be born and die, with a complete balance
between the two, analogous to the balance achieved by (A1), (A2). The geometrical
requirements for such an extension appear quite excessive.
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