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Abstract. One special case of Arak, Clifford and Surgailis’ 1993 point-based polygon
models for random graphs yields an isotropic random tessellation of convex polygons,
with all vertices T-vertices. It is shown that its polygon distributions coincide with those
of the random tessel | ation determined by Poisson isotropic random linesin the plane, for
which all vertices are X-vertices (cf. Fig. 4). This surprising property extends to general
orientation distributions, e.g. to rectangular tessellations stemming from a two atom
distribution. Applying this property, it is shown that a wide variety of distinct random
tessellations obtained from these two by superposition, nesting, etc. possess those very
same polygon distributions.

1. Introduction and Summary

Tobegin (Sec. 2), basic properties of homogeneous Poisson linesPintheplane R? with
orientation distribution ©, and the random tessellation % of convex polygons they
determine, are developed. Stemming from P, next (Sec. 3) the stochastic process A(C) of
interconnected line segments—" |-segments’—with orientation distribution © within an
arbitrary convex domain C of R?isspecified, employing an advancing fixed orientation line
(AFOL). Theprobability element of itsrealisation within C isdetermined, thusincidentally
showing that the orientation of the AFOL isimmaterial for this stochastic construction.
Moreover A(C) is shown to be consistent in the sense that, for any C' D C, therestriction
of A(C') to Cisstochastically equivalent to A(C). A complete stochastic analysis of the |-
segments of A(C) is carried out.

Ignoring edge effects, A(C) hasthe effect of partitioning C into arandom tessellation
A(C) of convex polygons, with all vertices being T-vertices, the intersections of pairs of
[-segments. It is shown that the probability element for any given convex polygon
coincides with the corresponding element for %, so demonstrating that their polygon
distributions are identical.
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To conclude (Sec. 4), awide variety of distinct new random tessellations, generated
from these two (%, #{) by superposition, nesting and/or partition and restitution of ©, are
shown to possess the same “Poisson” polygon distributions.

Certain of our theory duplicatesthat of ARAK et al. (1993), but since the tessellations

of interest are but a special case of their rather complex general model, our specific and
hence simpler self-contained treatment may be valuable as a simpler speedy accessto this
area for the general reader.
History. This paper has an interesting history. In MAckisAck and MILES (1996) we
investi gated several model sfor homogeneousrectangular tessellationsin R2with exclusively
T-vertices, the main one of which—Gilbert’ s—proved to berather intractable. Subsequent
tothat, wearrived at afully tractable such tessellation with rather nice properties. Thiswas
presented at meetingsin 1995 (MAckIsack and MILES, 1996) and 1997 (MILES, 1998), at
thefirst of which its similarity to one of the models of ARAK et al. (1993) was pointed out
tous. Theonly differencetranspired to be our two atom orientation distribution versustheir
isotropic one. In fact our theory was found to extend to the case of arbitrary orientation
distributions, aspresented here. Thuswearehappy to acknowledgethe original presentation
of thissplendid model in ARAK et al. (1993). Our most i mportant contribution, inthispaper,
is an analysis of its specific properties, with identification of its distributions as those of
the classic random tessellation determined by Poisson lines in R?.

2. Anisotropic Poisson Line Process in the Plane
First we specify (infinite unoriented) lines in the plane R? by
G=G(h6) (-w<h<ew, 0<6<m),

where (h, 6) are polar coordinates of the perpendicular from the origin O to the line. The
relevant invariant integral geometric density (SANTALO, 1976) is dG = dhd6. We write P,
(0,d) (d=1, 2, ...) for aPoisson point process of intensity A in d-dimensional euclidean
space RY (notationally this conforms to “ P(s, d)” for Poisson s-flats in RY, cf. MILES
(1971)). Then we define the anisotropic Poisson line process

P=P2)

in R? of intensity T and orientation distribution © by {G}, i.e. {h;,, 8}, where

(i) {h} isPL0, 1) on RY; and, independently,

(i) {6} areindependent identically distributed from ©.

Thus{h;, 8} is, in general, an inhomogeneous Poisson point process in the strip —o
<h <o, 0< < m Theisotropic case corresponds to © uniform on [0, 77), in which case
{h;, 8} is (homogeneous) P, (0, 2) in the same strip. The distribution © is quite general,
but we excludethe degenerate casein whichitsprobability isconcentrated on asingle point
(in which case no line/line intersections may occur).

The basic “prob el” (probability element) applicableto P is
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dp = dp(h,6)
= Pr{thereisaline of P within (dh, d6)}
= 1dh©(d6)

(=(t/mdhd@ in the isotropic case). In what follows we shall make much use of the
“completeindependence” of Poisson processes. Itisof interest that the (isotropic) P occurs
as a limiting example of ARAK et al. (1993)’s general model (their Case 1).

We next develop some of the basic properties of P.
P ishomogeneous. That is, P isstochastically invariant under arbitrary translationsin R2.
This stems from its construction, specifically the homogeneity of {h;}, and {8} being
independent identically distributed.
Hitting distributions for P. Let C be a bounded convex domain in R? and

v(c)={(h6):G(h,6)nC#J},

so that the number of lines of P hitting C equal s the number of points{h;, 8} within V(C),
which is Poisson distributed, with mean value

[uc) 9P = [y 1ehO(d6)

/s
=Tf We (6)o(db)
where w(6) is the width of C at orientation 8

=1C, say; @
i.e. C isthe @-weighted mean width of C.
Examples. (i) Intheisotropic case C = §(C)/m, where Sdenotes perimeter; (ii) For adisc

Q(q) of radius g, Q(q) = 2q for all ©.
For aline segment L of length | and orientation ¢,

L =1x(¢) 2

where

and
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(6.9 =|sin(6- ¢)|.

Note x(¢) = 2/min the isotropic case.

Line sectionsof P. Consider the point process section of P by an arbitrary line G(b, ¢) with
orientation @ The prob el dp may alternatively be expressed in terms of (u, 6), where u
measures length along G(b, ¢) from some arbitrary origin, by

dp = 1dh©(db)
= 1du(6, 9)©(d ), (3

from which we conclude that the section is a P(0, 1) with intensity 7x(¢); the orientation
distribution of the line through each point of this process being given by

Pr{délo,¢ D(8 ¢o(d 9. (4)

These two properties permit a stochastic construction of P with respect to any given G(b,
@. Infact, agivenline of P itself also intersectsthe rest of P in exactly the same way, i.e.
same point process and (independent) orientations.

The planar point process P|P of X-vertices of P. That is, the aggregate of line/line
intersection points for P. Appealing to Poisson independence, the joint P prob el for two
linesin R?is

dp,dp, = rdh,©(d6, ) (rdh,(d6,)

= r*da(6,,6,)0(d6,)o(ds,), (5)

where da is an area element of R2. It follows that the intensity of P|P is

:_52 [0 [(61,6,)0(d8r)0(d6,), (6)

the factor 1/2 stemming from the doubl e representation pertaining; moreover, the prob el
of thejoint orientation distribution of the two lines through a uniform random point of P|P
is

0(6,,6,)0(d6)e(d6,).

Note pp = 72 in the isotropic case.

The random tessellation . P has the effect of partitioning R? into an aggregate % of
random convex polygons—arandom tessel | ation—the characteri stics of which conformto
(almost sure ergodic) distributions (MILES, 1973), e.g.
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(i) thedistribution of in-radii is exponential (271);

(ii) theconditional distributionof D for auniform random member D of %, giventhe
number N of its sides or vertices, isT'(N — 2, 1), i.e. the distribution of the sum of N — 2
independent exponential (1) random variables.

Many (ergodic) moments are also known, especially in the isotropic case (MILES,
1986). Our main interest in this paper isin thisand various other such random tessellations
of R,

The probability element for polygonal cells of . Consider an arbitrary convex polygon
D in R?, which suppose has N sides or vertices —i.e. a convex N-gon. We may represent
D by itsline segment sides L; (i = 1, ..., N) or, more simply, by the lines containing them:

D =D(Gy, ..., Gy).

The corresponding P prob el, by complete Poisson independence, is

Pr{dD} = Pr{thereisacell of 9 within (dG,, ..., dGy}
= Pr{there are lines of P within each of
dG,, ... dGy and there are no (other) lines of P hitting D}

= ﬁﬁ dp aﬂ)(l— dp).

Again, by Poisson independence,

[1(-dp)= exp{ ffoo) dh@(d@)}

V(D)

= exp(—r5 )

Thus we have the basic prob el
N
Pr{dD} = exp(—rD)|_| dp, (7)
1
for 2.
3. ACS (Arak-Clifford-Surgailis) Random Tessellations

Specification of the line segment process A(C) within an arbitrary bounded convex
domain C. This specification is best explained by way of atypical realisation (Fig. 1).
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Fig. 1. Illustrative realisation of A(C).

Thus the realisation comprises a number of interconnecting line segments within C.
Each end of each such segment is either a T-junction with another segment or an
intersection with the boundary dC of C. When terminated by T-junctions at both ends, we
refer to these segments as I-segments (MACKISACK and MILES, 1996).

A(©)=A2(C)

is now specified in terms of the Poisson line process P = P.® discussed above. Consider a
fixed orientation line G(t, ¢). Allowing t to increase from —w to o, we have an advancing
fixed orientation line (AFOL); it may be useful to think of t asatime variable. Let t; <t;
specify the tangent positions of G(t, ¢) with C. Let P(C) denote those lines of P which
intersect C, and R, (C) denote the ray parts of them extending from t = — to their first
contact with C. A (C) stems from the extension of the members of R ;(C) into C, subject
to the following unfolding random mechanism within C, ast increases from t; to t;.

(A,) Within (t, t + dt) any advancing (i.e. relative to G(t, ¢)) segment L () with orientation
 may “give birth” to a new advancing segment, having prob el

i.e.withaprob el relativeto L(y) of (1/2)[ rduliy, 6[® (d6)], where u measureslength along
L(y) (cf. Equations (3) and (4) above).

(A,) If within dt any two advancing segments meet, then afair coin toss (probabilities 1/
2, 1/2) determines which of them advances and which is blocked (“dies”).

One minor restriction is necessary: the orientation ¢ of the AFOL must not coincide with
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a positive atom of ©'s probability. This completes the specification of A (C). In the
isotropic case it is the model presented in Case 3 and figure 6 of ARAK et al. (1993).

It is also useful to define the combined line/line segment process PA(C) over R? as
follows. Suppose advancing line segments within C reaching 0C extend outside C asrays
tot = oo, the union of which denote by RJ(C). Then, letting P¢(C) denotethelines of P not
intersecting C, define

PA {C) = A {C) U R, (C) U R,/(C) U P¥(C).

Thus, ast increases from —, PA (C) coincides with P up to t,, but thereafter is modified
by thepresenceof C. Itisasegment processwithin, and alineprocessoutside, C. Thereader
should be satisfied as to how, for example, Fig. 1 is sequentially generated by the AFOL;
and that it could well have been thus generated with respect to (almost) any ¢-valuein [0,
n). Ignoring edge effects near 9C, A (C) has the effect of partitioning C into an aggregate
A C) of convex polygons. Likewise PA (C) generatesthe random tessellation % s (C) of
R? (with no such edge effects!).

Probability element for a given configuration of A (C). Suppose the given configuration,
e.g. that of Fig. 1, comprises n line segments:

B=(Ly, ... L,

where L; (Cline G;) has length |; and orientation ;. We now derive its prob el Pr{dB},
making abundant use of the compl ete Poi sson independence prevailing. ThusPr{ dB} stems
from the product of the following individual independent prob els:

(@ Mdp; over al advancing P lines entering C (R, (C));

(b) M(1-dp) over all advancing rays entering C which don’t “carry” aline of P;

1
(c) HE over al blocks occurring within C;
oL, O . N
(d) n[Edpj o over all births occurring within C; and

1 0 . . : -~
(e N gl— 5 dpD over all possible births which don’t take place within C.
In other words

n

0 01 n
Pr{dg = DzD eXpD_.Uv(c dpa] EeXpD_EJ’J’V(Li)dp%:l dp, 8

where mis the total number of T-junctionsin B. Applying Eq. (1), this reduces to

Pr{ag = 2 e(-iC)enr L S L] . ©
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c

Fig. 2. Illustrating the argument leading to the Consistency Theorem.

Since this is independent of the fixed angle ¢ of the AFOL, we have the
Optional Orientation Theorem. A (C) does not depend upon ¢, and hence may be written
A(C). Similarly we may write s{(C), PA(C), etc.

Corollary. Suppose T is any given tangent to C and H(T) is the half-plane bounded by T
which does not contain C. Then PA(C) within H(T) isstochastically equivalent to P within
H(T).

Consistency. SupposeC, C' arebounded convex domainswithC C C', and A(C|C') denotes
the restriction of A(C') to C.

Consistency Theorem. A(CJC') is stochastically equivalent to A(C), for all C' D C.
Proof. Suppose C is a convex N-gon, let L be one of its sides, H(L) be the half-plane
bounded by L containing C, and C" = H(L) N C' (Fig. 2). Now, generating A(C) in the
arrowed direction orthogonal to L, asisall owable by the Optional Orientation Theorem, we
see that A(C"|C') is s.e. (stochastically equivalent) to A(C"|C") and hence A(C|C') iss.e.
to A(C|C"). Thisargument may be repeated another N — 1 times, to show that A(C|C') iss.e.
to A(C, C) = A(C). Clearly this result extends from convex N-gons to general bounded
convex C.

Corollary. A(C) ishomogeneousinthesensethat, if C, C C, C, C Cwith C;, C, translates
of each other, then A(C,|C) is stochastically equivalent to A(C,|C), i.e. after translation.
Arbitrary line section of A(C). Suppose the line G (of orientation ¢) partitions C into the
two convex subdomains C,, C,. Writea,, a, for the opposite advance directions orthogonal
to G, g being through C; towards G (i = 1, 2). Now, by the stochastic construction, the
section by G of A(C) is s.e. to the section by G of A(C,) viathe advance a,. But, by the
Optional Orientation Theorem, thisis s.e. to the section by G of A(C,) viathe advance a;
which, again by the stochasti c construction, coincideswith the corresponding P result (Egs.
(3) and (4)), viz. Py (0, 1).

Probability element for the T-junction vertices of A(C). By the Consistency Theorem and
homogeneity, we may take asour configuration BaT-junction within C taken asadisc Q(¢€)
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Fig. 3. An I-segment, with its associated J- and K-segments.

of radius € centred at the T-junction. Let the*top” (horizontal) and “ bottom” (vertical) bars
of the “T” lie within lines G,, G, respectively. Then, by Eq. (9) withm =1, n = 2, the
corresponding prob el is

1 O T 2 12
E{—TQ(&‘} epo-EZ L a] dp;.
Going to the limit € - 0, the desired prob el is
dplEl;—dpz (10)

which may be re-expressed by means of Eq. (5). Allowing the top/bottom to be G,/G,, Eq.
(10) is doubled, yielding identity between the P and A values. Thus, writing A|A for the
point process of such T-vertices, geometrical considerationsimply that itsintensity p, =
2pp, pp being given by Eq. (6).
Geometry of 1-segment structures. Besides |-segments there are also J- and K-segments,
best illustrated by an example (Fig. 3). See also MAcKIsack and MILES (1996, Sec. 2). J-
segments are the sides of the polygons of #(C), while K-segments are the common
boundariesof adjacent polygonsof {(C). Thus, inFig. 3, thesinglel-segment containsfive
distinct J-segments (1, 2, 34; 123, 4) and four K-segments (1, 2, 3, 4).

Such a homogeneous random structure engenders certain geometric expectation
identities (MAcCKISACK and MILES, 1996, Sec. 3). Thus, since each T-junction serves both
as an “intermediate” point and an “end” point,

E{ number of T-junctions along a uniform random I-segment} = 2.

Moreover, for their lengths (subject to uniform weighting),

E{1} =2€{1}} =3€{I}. (11)
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Probability element for the I-segments of A(C). To find the prob el for a given |-segment
occurring within A(C), we proceed as for the T-junction above, but for simplicity omit the
shrinking of a containing convex domain (C) down to the I-segment itself (Cy). The
geometry and notation areillustrated in Fig. 3, wherethe l-segment joinsG N G;and G N
G (n=5) and each of G,, Gz and G, support aline segment, each of whichmay lieon either
side of G. Thus the associated configuration

B, =(G:G..G}, ... GL.G,)

where + relatesto theside of G. Let G = G(h, ¢), the orientationsof G, ..., G, be 6,, ..., 6,
and uy, ..., U, locate their intersections with G (from some arbitrary origin on G), so theI-
segment length | = u,, — u,. Then, by Eq. (9),

n D _ P
ofo) <25 o rent £
which, by Egs. (2)—(4),

- 55 P ] (o @hame(da) el (ol

(2"2relations, corresponding tothe +'s). The 6, dependences enter in an independent way,
SO may be integrated out:

Pr{dG;dul, dun}
n
s it
T " exp u U p|:| u
( /3) exp{ )(u, —ul)} dp|:| du,
where

k() =31x(¢) / 2

(=3t/min the isotropic case). Thus
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Pr{dul, . dun|G} o)/ 3 exp{ - ul)} rn| dy;
1
1 1 O
= §K(¢)dul ) k(¢) eXp{_K(@(Uz - Ui} du, g
) exp{—K(qo)(u3 - uz)} du%

o) exp{—K(@(un - un_l} du, E

This expresses the prob el of such an I-segment in sequential form; save for the angles 6,
which are independent, with the usual prob els I ¢, 6,[®(d6) (Eq. (4)).

Itisnatural to couchthese prob elsintermsof probability distributions. Thus, starting
from G N G, the successive intersections G N G; conform to a Poisson process with
intensity k(¢), the factors 1/3 reflecting the three choices at each intersection: birth, block
and terminate. In other words, the K-segments have exponential { k(¢)} distributions, and
nhasageometric (1/3) distribution. Fromthesetwofactsit followsthat | hasan exponential
{k(@/3} distribution. The condition for a J-segment is that successive probability 1/3
events, birth or block, be the same at all itsintersections, from which it follows that the J-
segments have an exponential {2«(¢)/3} distribution.

Asfor mean lengths, 1, = 21, = 3y, agreeing with the more general result equation
(24) in MAckisack and MILES (1996)—Eg. (11) above. One may also show that,
associated with a uniform random I-segment,

E{number of J-segments (summed over both sides)} = 4,
E{number of K-segments} =3
To summarize, for an I-segment with given orientation ¢,
| is exponential (A) 0

J- values are exponential (2A) % (12)
K -vauesare exponennal 3)\ E

(A = k(@3 or x()/2).
To combine these results for all 1-segments in a large domain C, one must weight
accordingly. For example, if f(X), f(X) are the densities of X =1, J, K then
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f ol dqo)

J-O

_Jofo <9<P (d9o(dq
Jo o (0.90(@ge(dq

the denominator being 2pp/T2 = pA/T2.
I sotropic case. Such complexity disappearsintheisotropic case, where k(¢) = 31/7t. Thus,
for the totality of such segments, I, J and K have exponential distributionswith parameters
/11, 21/rand 31/71, respectively.
Probability element for a given N-gon polygonal cell of #4(C). The derivation closely
parallelsthat for |-segments, with the domain C being shrunk down to the N-gon D itself.
Torender D asavalid configuration B within C (=D!), at each of its N vertices extend one
(arbitrary) edge outside C. Now Pr{dD} isthe product of two factors, obtained as above
(Ea. (8)):

(@) The prob el for the N sides of D is

N
EEE{\IHdp,.
1

(b) To take account, in an element of dC = dD, of:

(i) external P lines not penetrating D: afactor 1 — dp-(1/2);

(i) nointernal births: afactor 1 — (1/2)dp;
the combined effect of whichis1—dp. The corresponding prob el isthe product of thisover
al (line segment) secants of D, viz

exp{ o) dh@(dei = exp(—rﬁ).

Combining (a) and (b), and summing over all 2N choices of edge extensions, the required
prob el

Pr{dD} = ZNDIE{\‘ﬁj dp Hexp (-D)

= exp( rD)rl| dp.. (13)
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Notethat no restriction whatever hasbeen placed here onthe P lines blocked by D, and that
it coincideswith the corresponding prob el Pr{dD} for % (Eq. (7)). Notealso that, asisnow
expected, theprob el of J-segmentsof A (C) with orientation ¢(Eg. (12)) coincideswith that
of the sides % with orientation ¢ (Egs. (3) and (4)).

Rectangular tessellations. In MACKISACK and MILES (1996) we investigated various
stochastic models of homogeneous rectangular tessellations, in which each cell was an
(aligned) rectangle and, desirably, all vertices were T-vertices. Only after its publication
did we discover what turned out to be A .°, with © concentrated on two orthogonal atoms:

faa6=0 0O
_ .0 (§+n=1)

na@=rml2q

Without a doubt this seems to us to be the nicest and most tractable nontrivial model

possible for a rectangular tessellation. For it,

k(@ = 3tx(@/2 = (31/2)(&|sing + n|cosg).

The sides of a uniform random rectangle are independent exponential random variables,
with mean values 1/7¢, 1/1n; asthey are, of course, for the corresponding, but somewhat
trivial, % rectangular tessellation formed by two families of orthogonal random lines.

4. Further Random Tessellations Derived by Superposition, Nesting, etc.

In the previous section we have seen that the stochastic structures of A(C) (T-
junctions, I-segments, polygons) have precisely the same prob els as those of the
corresponding structures for P in R?. For example, the prob el for the polygon of %
containing O coincides with that of the polygon D of s4(C) containing a fixed point of C
(provided D C sufficiently large C). In other words, they have the same stochastic
construction: that which isimplicit in the definition of P in Sec. 2. Since C is an arbitrary
bounded convex domain of R?, these considerations beg the question: What can be said
about the empiric distributions of «4(Q(q)) as g —  (assuming edge effects near 9Q(q)
become asymptotically negligible)? Do they coincide with the corresponding limit values
for (Q(q)) explored elsewhere (MILES, 1964, 1973)?In fact aparallel theory for s{(Q(q))
may be set out, the successive steps being similar to thosefor % (Q(q)). Because of this, and
because its inclusion here would upset the balance of the paper, also rendering it
considerably longer, itisomitted. Theinterested reader isreferred tothe cognatereferences
MILES (1970, 1971, 1974). Thus the empiric distributions of {(Q(q)) converge almost
surely tothesamedistributionsas%(Q(q)), sincetheselimit distributions coincidewith the
(identical, i.e. sd ~ P) prob els above.

Ergodic bridge. The ergodic essence of these resultsis epitomised by an “ergodic bridge”
(MILES, 1995). Write A for area and Z for a general translation invariant continuous
(possibly vector) characteristic of a convex polygon. Then we may write °f(A, Z) for the
joint p.d.f. of (A, Z) for the polygon °D of % containing O. Writing f(A, Z) for the limit
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® (ii)
Fig. 4. Simulations of (i) P, % and (ii) A, ¢ with common intensity 7 and orientation distribution © (having

density 4/(5m) for 6 O (178, 172) and 14/(5n) for 6 O (3774, n)). The polygons of ? and 4 have the same
distributions!

(ergodic) almost sure p.d.f of (A, Z) for the equi-weighted aggregate of polygons of
P(Q(qQ)) asq - o, we have the basic ergodic bridge relation

Af (A 2)

TA2="gm

where E(A) isthe mean value of A with respect to f. Thisrelation stems from the fact that
QOislikea“uniformrandom point” relativeto the homogeneous P, so that the “ probability”
that it fallsin any polygonis [ the area of the polygon. It isan ergodic bridge in the sense
that knowledge of °f, depending upon asingle polygonfor all realisations, interrelateswith
that of f, depending (almost surely) upon all polygonsfor asingle realisation. Knowledge
of either determines, in principle, knowledge of the other. Since the prob els Pr{dD} for %
and & coincide (Egs. (7) and (13)), it followsthat °f for % and s« coincide; and hence also,
by the ergodic bridge, that f for  and « coincide. For example, the distribution of in-radii
and the conditional distribution of D given N mentioned in Sec. 2.

By way of illustration, Fig. 4 shows simulations of P, %, and A, & in a square, with
the same 1 and © values. (We are indebted to Hao He for the A, 54 simulation.)

Now we have the following stochastic construction equivalent to the definition of P
=P.° (1, 2) in Sec. 2. A stochastic construction of °D for either P,° or A.® is as follows.
Suppose { h;} are the points of aP, (0, 1) and { 8} are independent identically distributed
from ©. Writing H; for the half-plane bounded by G(h;, ) which contains O, we have NH,;
is stochastically equivalent to °D. This property is now repeatedly exploited, to exhibit a
wealth of further random tessell ati ons possessing thesevery samedistributions. To easethe
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notation in the sequel, we write P[t, @] for P,°, A[1, O] for A,® and *[1, @] for either.
Superposition. As an example consider the (independent) superposition

P/AA=P[1, 0] NA[T, ©,)

of these two processes. Since the intersection of two convex polygonsisaconvex polygon
(or &), we havethat P /\ A determines atessellation of random convex polygons. Consider
the stochastic construction of °D with respect to P /\ A. It coincides with that of NH;(hy;,

6,), where {h;} are P; 4, (0, 1) and each 6, is chosen from

%91 with probability 7, / (t, +7,), and
D, with probability 7, / (T, +75);

which is equivalent to selecting each 6 from

o= 110, +7,0,
T, +7,

Thus, for example, °D{ P[1,, ©,] /\ A[T,, ©,]} isstochastically equivalent to °D{P[ 1, + T,,
(1,01 + 1,0,)/(1, + T,)]} with, by the ergodic bridge, acorresponding result for the ergodic
equi-weight distributions. This result generalises immediately to the superposition of n
mutually independent processes, each of which is either P or A:

"D{I]Di [Ti ,Oi]} is stochastically equivalent tOOD{EiZ T; ,(Zriei )/ZTI]} .

Nesting. Associate with each cell D; of *4[7,, ©,] arealisationr; of *;[ 15, 8], ther; being
mutually independent. Let *,{*,} comprise *,[7;, ©,] together with r; within each of its
Dy’s, i.e. *, nested within *,. Clearly this nesting may be iterated, to yield

RETE R P BP0 Q') 90 3

and the above argument extends, to show

°D{0 ,} is stochastically equivalent to °D{[iz (S Tiei)/zri]} ,

with a corresponding ergodic result for the equi-weighted tessellations.

Intermediate case. These results apply also to the intermediate case, in which each cell of
* 1 is selected (independently) in category j of m categories with probability p, (j =1, ...,
m). The nesting involves taking the single realisation r; of *, within all category j cells (
=1, ..., m). The details are |eft to the reader.
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Partition andrestitution of ©. Nesting may becombined with partition of © toyieldfurther
useful results. We illustrate with a simple example. Suppose ©,,5 comprises three equal
atomsof 1/3 at 0, 773 and 2773; ©,, comprises two equal atoms of 1/2 at 0, 773 (etc.); and
O, comprisesasingleatom of 1 at O (etc.). Then the polygons of thefollowing tessellations
have the same distributions:

EﬁT- G)123]
or/3, @lz]{Eﬁr /3, 93]} (single nest)

frrze{dr/3e;){dr/3.05}} (doublenes)

The reader might care to sketch realisations of these tessellations. Clearly a wealth of
differing such tessellation models possess common “ Poisson” polygon distributions.

5. Closing Remarks

A within non-convex domains. Suppose we replace the convex C by a pretty general
bounded domain X, e.g. one bounded by a simple closed continuous curve, or by adisjoint
union of such curves. Again an AFOL may be advanced across X, applying the A
mechanism (A,), (A,) of Sec. 3 within X and simple ray extension in X°. Thisresultsin a
line segment process within X and aline process within XC, the net result being a partition
of R? into a random tessellation of convex polygons. The entire above theory extends in
straightforward manner, the key again being prob el expressions. For example, the prob el
for agiven N-gon, even straddling X = 0X¢, isunchanged! The manifold possible choices
of X generate avery general range of tractable stochastic models conforming to the classic
Poisson polygon distributions.

Dimensional extensions? P, % may be effortlessly extended to Poisson hyperplanesin RY,
P(d -1, d), with generated Poisson polytopes %;; and more generally to Poisson s-flatsin
R, P(s, d), (0 < s<d) (MILES, 1971, 1974). However, there seems to be no corresponding
extension possible of A to higher dimensionalities, e.g. by advancing a fixed orientation
planein R®, against a background of Poisson lines P(1, 3) or planes P(2, 3). There appears
to be no mechanism for such lines or planes to be born and die, with a complete balance
between the two, analogous to the balance achieved by (A;), (A,). The geometrical
requirements for such an extension appear quite excessive.
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