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Abstract.  A new approach of modeling for developing spatio-temporal patterns by using
a probabilistic cellular automaton is proposed. The developing spatio-temporal patterns
is too complicated to describe it by a small number of parameters. In our model, two states,
i.e. black and white, are used to represent the state of cells. Therefore, the spatio-temporal
pattern is treated as the developing black and white patterns. Our model has three model
parameters that characterize the nearest neighbor interaction. These model parameters
can detect the change of mechanism that generate patterns, which is one of the strong
points of our model for monitoring the change of mechanism. Artificial black and white
patterns are generated for a given parameters, and then the optimal parameters of the
probabilistic cellular automaton model are sought. Optimization of the parameters is
carried out by using two genetic algorithms: classical one and more sophisticated one. The
convergence of the model parameters by two genetic algorithms is discussed. The fitness
between the model and the observation is measured based on the Kullback-Leibler
information.

1.  Introduction

Pattern formation is one of the most interesting topics in nonlinear science. There are
various patterns that are observed in nature (MANDELBROT, 1982; FEDER, 1988; VICSEK,
1989). However, to characterize the patterns is usually very difficult since almost all
patterns in nature are very complicated. Furthermore, even for a static patterns it is not easy
to characterize quantitatively, but some patterns dynamically change.

To characterize dynamically developing patterns, i.e. spatio-temporal patterns, is an
exciting topic in various fields. Spatio-temporal patterns include too much information to
characterize. Therefore, we focus on a black and white pattern. Black and white patterns
are not special patterns. A lot of black and white patterns, e.g. mineral dendrite, are
observed in nature (FEDER, 1988). In general, spatio-temporal patterns can be treated as
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developing black and white pattern by carrying out the coarse-graining operation in time-
space dimensions (HIRATA et al., 2000a). For examples, a complex spatio-temporal
seismic activity patterns are treated as developing black and white patterns (HIRATA and
IMOTO, 1997; POSADAS et al., 2000).

Developing black and white patterns is still complicated to describe by a small number
of parameters. A cellular automaton is one of the tools of modeling for complex phenomena
(FARMER et al., 1984; TOFFOLI and MARGOLUS, 1987; ADAMATZKY, 1994). From the
viewpoint of the interaction, we try to characterize developing black and white patterns by
the nearest neighbor interaction that are described by a small number of parameters
(HIRATA et al., 2000a). In our approach, spatio-temporal patterns are reproduced by a
probabilistic cellular automaton in which the nearest neighbor interaction are described by
automaton rules. Our approach that describe the interaction has a merit that we get an
information about the mechanism of pattern formation simultaneously.

2.  A Probabilistic Cellular Automaton Model

Let us consider a probabilistic cellular automaton model in which the developing
black and white patterns are described by only the nearest neighbor interaction. The spatio-
temporal patterns are discretized in time, space and state dimensions. A square lattice is
used as two-dimensional space, and the time step tn is introduced by discretization in time
space. The state of the cell (i, j) at the time step tn+1, si j

tn
,

+1 , is determined by the state of the

cell, si j
tn
, , and its nearest neighbor cells, si j

tn
± ±1 1, , at the time step tn. Here, the state of the cells

have only 2 available states (black and white), which is a discretization in states. The states
of black and white are assigned 1 and 0, respectively. As a model dynamics, the evolution
of the cell is described by the transition probability. Therefore, we obtain the following
transition probability,
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Here, Prob( si j
tn
,

+1  = 1) is the probability that the state of the cell (i, j) will be 1 at tn+1. As the
value of the state, 0 or 1, is not essential, we can assign –1 or 1 to the states like as Ising
model. Our model is applicable to the complicated spatio-temporal patterns, such as spatio-
temporal seismic activity patterns. As for application of the model to the seismic activity
patterns, we may use that state of cells is active (1: black) or inactive (0: white) (HIRATA

and IMOTO, 1997; POSADAS et al., 2000).
A probabilistic cellular automaton model for developing black and white patterns is

shown in Fig. 1. The model has three parameters (p1, p2, p3) that characterize the nearest
neighbor interaction. In this model, only nearest neighbor interaction is considered so that
the small template shown in Fig. 1 is used. Let us consider the meaning of the model shown
in Fig. 1. In case of its four nearest neighbor cells being the states of 0 (white), the
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probability of the cell with the state of 1 (black) at time step tn being the state of 1 at tn+1
is p1. The cells with the state of 1 increases the probability of the nearest neighbor cell
becoming the state of 1 by p2. In the case of p2 > 0, the effect is activation and in the case
of p2 < 0, the effect is inhibition. The transition probability (in other word, the conditional
probability) of the cell is a function of the cell and its nearest neighbor cells’ states. When
the number of nearest neighbor cells with the state of 1 is 4, 3, 2, or 1, the transition
probability of the cell becoming black cell is increased by 4p2, 3p2, 2p2, or p2, respectively.
If the cell’s state is white, p3 is used instead of p1. Therefore, we can rewrite Eq. (1), and

obtain the transition probability as a function of n and si j
tn
, ,

Prob s f s n f Si j
t

i j
t

i j
tn n n

, , ,, .+ =( ) = ( ) = ( ) ( )1 1 2

Here, n is the number of nearest neighbor cells of which states are 1 (: black) at the time

step tn. For simplicity, we will use the notation of Si j
tn
,  that represent the state of the (i, j)

and number of its neighbor cells with state of 1. ( Si j
tn
,  = ( si j

tn
, , n)). In our model, the number

of black nearest neighbor cells, n, is considered like as Ising model.
The meaning of parameters are summarized following:
The meaning of p1:  If p1 is large value, the probability that the cell of the state 1 at

tn will be in the state of 1 at tn+1 is high. The value of p1 is non-negative (0 ≤ p1 ≤ 1).
The meaning of p2:  The parameter p2 describes the nearest neighbor interaction.

In case of p2 > 0, the effect of the interaction is excitation. In case of p2 < 0, the effect of
the interaction is suppression.

Fig. 1.  A probabilistic cellular automaton model.
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The meaning of p3:  The meaning of p3 is the background activity when the cell is in
the state of 0 at tn (0 ≤ p3 ≤ 1).

Ten available state of Si j
tn
,  are shown in Fig. 2. By using Si j

tn
,  instead of si j

tn
, , si j

tn
± ±1 1, ,

the number of states considered are reduced from 25 = 32 (black and white pattern on the
small template) to 10 (HIRATA et al., 2000b). According to the rules, transition probability
Prob( si j

tn
,

+1  = 1) is given by the function of Si j
tn
, . The transition probability is shown at the

bottom of the template in Fig. 2. There is a possibility that the transition probability
calculated by the rule shown in Fig. 2 is larger than 1 for some parameter set of (p1, p2, p3).
In such a case, the transition probability is assigned to 1.

3.  Optimization of the Model by Genetic Algorithm

Our probabilistic cellular automaton model where nearest neighbor interaction is
described by the parameter (p1, p2, p3) can reproduce various patterns, e.g. random pattern,
clustering pattern. Clustering patterns are often observed in nature (e.g., HIRATA and
IMOTO, 1991) and attract scientists’ attention (BAK et al., 1987). The black and white
pattern of Ising model at the critical temperature is one of the examples of clustering. In this
case, p2 will be positive value. The random black and white patterns are easily reproduced
by the parameter set (p2 = 0) that means no interaction.

One of the most important part in the model is to find out the best fit parameter for
given observational patterns. In this paper, we generate the artificial observational black
and white patterns by using the parameter set (p1a, p2a, p3a). After that, we try to find out
the best fit parameter set for artificial patterns by using the genetic algorithms.

3.1.  Artificial black and white patterns
First, we produce the developing black and white patterns by Monte Carlo simulation

at the given parameter set (p1a, p2a, p3a). In this study, we used the parameter set of (p1a, p2a,

Fig. 2.  Ten available states on the template that consist of the center cell and nearest neighbor cells and transition

probabilities ( f( Si j
tn
, )).
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p3a) = (0.35, 0.15, 0.02) for Monte Carlo simulation. Then, we will seek the best model
parameters by analyzing the patterns generated by the simulation.

Figure 3 is the developing black and white patterns obtained by Monte Carlo
simulation. A 40 × 40 cells is used for generating an artificial developing black and white
patterns. At the Monte Carlo simulation, one of the 40 × 40 cells is chosen at random and
the state of the chosen cell is up to date at the probability according to the Eq. (2) (see Fig.
2). In Fig. 3, the patterns are shown every one Monte Carlo step. (As the number of the cells
is 1600, the procedure in which one of the cells is randomly chosen and up to date is
repeated by 1600 times in one Monte Carlo step. This means that one Monte Carlo step is
equivalent to 1600 discrete time steps.) The periodical boundary conditions are used in Fig.
3. As an initial pattern, the random black and white pattern is used. To avoid the influence
of the initial pattern, the evolving patterns after 1000 Monte Carlo steps are used, which
are shown in Fig. 3. Since p2a = 0.15 is positive, clustering patterns are observed in Fig. 3.

3.2.  Genetic algorithms
Two kinds of genetic algorithms are used for finding out the optimal parameter sets.
• Classical genetic algorithm.
• Sophisticated genetic algorithm (crossover, elite strategy are added to classical

one).
At first, we will describe algorithm of classical one. The procedure is following:
(1) Random 10 genes (parameter sets of (p1, p2, p3): p1, p2, p3 are random values) are

generated as initial values.

Fig. 3  An example of developing black and white patterns that generated by Monte Carlo simulations.
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(2) Mutations: The gene with the parameter of (p1, p2, p3) is changed to one with the
parameter of (p1 + δp1, p2 + δp2, p3 + δp3). Here, δp1, δp2, δp3 are small random values.

(3) Measurement of fitness of the genes: The fitness between model parameters and
observational patterns are measured by Kullback-Leibler information.

(4) Natural selection: If the new gene by mutations gets better value than previous
gene, the evolution occurs. Otherwise, the previous gene is used again (no evolution).

We calculate the procedure of (2)–(4) repeatedly. During these procedures, the genes
will evolve to one that is the best fit for the environment (best fit for the observational data
set).

In general, there is a bare possibility that the selected genes will fall into the local
minimum state in optimization by using the genetic algorithm. However, this problem is
avoidable by using a number of genes. Therefore, at least the best gene will not fall into the
local minimum state if a number of genes, e.g. 10 genes in this study, are used.

The most important part in the above mentioned procedure is how to measure the
fitness between the model and the observational pattern. The fitness of the model for the
observational data can be measured by Kullback-Leibler information (SAKAMOTO et al.,
1986). The measurement of fitness by Kullback-Leibler information is based on the
maximum log likelihood. In this study, therefore, the fitness is measured by Kullback-
Leibler information. Kullback-Leibler information I is given by

I p q P
P

Qi
i

i

; log .( ) = ( )∑ 3

Here, Pi is true distribution (that is approximated by observational data), Qi is the
distribution obtained by the model, and ∑ means summing up. The negative of Kullback-
Leibler information, –I(p; q), is called the entropy. In this study, Pi, Qi are probability
distributions.

si j
tn
,

+1  is the future state of the (i, j) cell at the time step tn+1. Si j
tn
,  is the state of the (i,

j) cell and its nearest neighbor cells at the time step tn: There are 10 available states. P( si j
tn
,

+1 ,

Si j
tn
, ) is a joint probability distribution. Pmodel( si j
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,

+1 , Si j
tn
, ) is a joint probability distribution

calculated by the parameters of the model. Kullback-Leibler information is rewritten,

I p q P s S
P s S

P s S
i j
t

i j
t i j

t
i j
t

i j
t

i j
t

n n

n n

n n
; , log

,

,
., ,

, ,

, ,

( ) = ( ) ( )
( ) ( )+

+

+
∑ 1

1

1
4

model

The P( si j
tn
,

+1 , Si j
tn
, ) and P( si j

tn
,

+1  | Si j
tn
, ) is related by the following multiplicative law,
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Here, P( si j
tn
,

+1  | Si j
tn
, ) is a conditional probability distribution, and P( Si j

tn
, ) is probability of Si j

tn
,

at tn. Substituting Eq. (5) into Eq. (4), Kullback-Leibler information is given by
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By using the following approximation P( Si j
tn
, ) ≈ Pmodel( Si j
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, ), we obtain
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P( si j
tn
,

+1 , Si j
tn
, ), P( si j

tn
,

+1  | Si j
tn
, ) are obtained by counting the histogram of the observational

data. Note that the Kullback-Leibler information, I(p; q), given by Eq. (7) may be less than
0 in some cases due to approximation P( Si j

tn
, ) ≈ Pmodel( Si j

tn
, ), although the original Kullback-

Leibler information defined by Eq. (3) should be larger than 0.
When (p1, p2, p3) is given, we can calculate Pmodel( si j

tn
,

+1  | Si j
tn
, ) according

Pmodel( si j
tn
,

+1  | Si j
tn
, ) = f( Si j

tn
, ) shown in Fig. 2. The above described Kullback-Leibler

information is used in natural selection. The optimum model parameters are those that
minimize the value of Kullback-Leibler information.

The optimization is carried out by 10000 mutations. The evolution of one of 10 genes
with parameters (p1, p2, p3) and Kullback-Leibler information, I, are shown in Fig. 4. The
initial values of ten genes are given by random number (0 < p1, p3 < 1, –0.2 < p2 < 0.2). In
Fig. 4, the information, I, always decrease during evolution because the mutated gene can
survive when fitness is improved. After about 400 mutations, the parameters converged.
The evolution of 10 genes are shown in Fig. 5. After 500 mutations, all genes converge to
the same values (p1, p2, p3) = (0.351, 0.143, 0.022) within the deviation of ±0.001.

The optimization of the parameter is carried out more sophisticated genetic algorithm.
The sophisticated genetic algorithm is following:

(1) Random 10 genes (parameter sets of (p1, p2, p3): p1, p2, p3 are random values) are
generated as initial values.

(2) Mutations: The gene with the parameter of (p1, p2, p3) is changed to one with the
parameter of (p1 + δp1, p2 + δp2, p3 + δp3). Here, δp1, δp2, δp3 are small random values.

(3) Measurement of fitness of the genes: The fitness between model parameters and
observational patterns are measured by Kullback-Leibler information.

(4) Natural selection: If the new gene by mutations gets better value than previous
gene, the evolution occurs. Otherwise, the previous gene is used again (no evolution).

(5) Elite strategy: The worst gene is exchanged by a new gene (p1
best, p2

second, p3
best)

generated by crossover. Here, (p1
best, p2

best, p3
best) is the parameter set of the best gene and

(p1
second, p2

second, p3
second) is the parameter set of the second best gene.
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Fig. 4.  Evolutions of the parameters and Kullback-Leibler information.
Fig. 5.  Evolutions of the parameters and Kullback-Leibler information for all genes.

Fig. 4. Fig. 5.
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Fig. 6.  Same as Fig. 4 for the best gene by the sophisticated genetic algorithm.
Fig. 7.  Same as Fig. 4 for the worst gene by the sophisticated genetic algorithm.

Fig. 6. Fig. 7.



28 T. HIRATA et al.

We calculate the procedure of (2)–(5) repeatedly. The difference of sophisticated
algorithm from classical one is an introduction of an elite strategy and crossover. The elite
strategy is that the worst gene is replaced by the new gene generated by crossover.

The evolution of the parameters (p1, p2, p3) and Kullback-Leibler information by the
sophisticated genetic algorithm are shown in Fig. 6. In Fig. 6, the behavior of the best fit
gene is shown. The rate of convergence by sophisticated algorithm is much faster than one
by classical one. The behavior of worst gene is also shown in Fig. 7. Due to the elite
strategy, the convergence is very quick. The parameters of the genes converges to (p1, p2,
p3) = (0.350, 0.143, 0.023) that is almost same value obtained by classical algorithm. After
about 200 mutations, the values of the parameters converged.

The information flow from the past states to the future states can be estimated by using
mutual information. Mutual information I( si j

tn
,

+1 ; Si j
tn
, ) is defined by
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We can rewrite it as
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by using a multiplicative law. The mutual information give us the amount of information
transmission from the past to the future. The value of the best model’s entropy (the negative
Kullback-Leibler information –I(p; q)), must be less than the mutual information (SHAW,
1984). Therefore, we cannot improve the model in order that the model’s entropy will be
beyond the mutual information. In our study, the mutual information is 0.2585 bit, and the
maximum of the model’s entropy is 0.233 bit.

4.  Discussion

The spatio-temporal black and white patterns are reproduced by the probabilistic
cellular automaton model from a given patterns. The model have three parameters (p1, p2,
p3) that characterize nearest neighbor interaction. By genetic algorithms, the optimization
of the parameters were carried out. Both classical and sophisticated genetic algorithms can
get very good optimal parameters. Results of optimization are following: Classical genetic
algorithm: (p1, p2, p3) = (0.351, 0.143, 0.022) ± 0.001; Sophisticated genetic algorithm: (p1,
p2, p3) = (0.350, 0.143, 0.023). Although the same optimum parameters were obtained by
both algorithms, the convergence by sophisticated one is faster than classical one.
Efficiency of sophisticated genetic algorithm is shown in this study.
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Our model is applicable to the patterns in which the interaction changed dynamically.
In that case, the parameters will change corresponding to the change of dynamics that
generate the patterns. Therefore, in our model, by monitoring the change of parameters we
can detect the anomalous changes of patterns. For example, our model may be useful to
detect precursory change of the seismic activity patterns (HIRATA and IMOTO, 1997;
POSADAS et al., 2000). Our model is easily extended to the more complicated one. In this
study, the states at time step tn are used on the small template (Fig. 2). The time axis can
be extended to tn–1, tn–2, ···. We can also extend the range of the cells. In the model, only
nearest neighbor cells are considered. To consider second nearest neighbor is another
extention. However, we must note that these extention is needed for more observational
data set in optimizing the parameters and a lot of parameters to fit (HIRATA et al., 2000b).
Our simple model has only three model parameters so that we can easily monitor the change
of the patterns. Our model is not special model but a general model for spatio-temporal
patterns, which means the model can be applied to various phenomena.
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