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Abstract.  Reconnection process of line singularities in the viscous fluid is explained and
possible interpretations on its mechanism are given. Reconnection processes in various
other physical systems are also explained, such as the vortex filaments in the superfluid,
the disclinations in liquid crystals and the magnetic lines in plasmas. Similarities among
these processes are suggested. It is emphasized that dissipative effects within the narrow
region where the reconnection is taking place is essential for its occurrence.

1.  Introduction

There are several kinds of line singularities appearing in continuum materials. The
term “singularity” indicates a state where a certain physical quantity in materials, such as
density, velocity or stress, has different values along a straight or curved line from those
out of this line. In many cases they play important roles for global behavior of the materials
in spite of the fact that the volume fractions of the line singularities are quite small, because
the singularities often possesses large energies so as to govern the dynamics of the whole
materials.

The most popular example of such line singularities would be the vortex filament
appearing in fluids with low viscosity. The real fluids familiar to us have finite viscosities.
But, the vortex with filament shape can appear if the viscosity is small enough or the fluid
velocity is large enough. Only one exception in the real fluids is the superfluid helium,
which has completely zero viscosity. The case of the superfluid is discussed later along
with line singularities in other systems.

A familiar vortex filament appearing in the nature is the tornado (see Fig. 1(a)). We
can observe a tornado easily since it is made of a dark or an opaque column. This column
is visible because of the dust or the water droplets suspended within it. However, the
dynamical nature of the tornado is not the suspended elements but the velocity distribution
of the air within and around it. As is shown in Fig. 1(b), the air within a tornado is rotating
around the central axis just like a solid cylindrical body, i.e. the velocity of the air is
proportional to the distance from the axis. On the other hand, the air out of the tornado is
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Fig. 1.  (a) Sketch of a tornado and (b) the velocity distribution within and out of a tornado.

moving around the tornado with the velocity which is inversely proportional to the distance
from the axis. Therefore, the velocity takes its maximum value on the surface of the
tornado. Note that this velocity distribution is common among many vortical structures in
open space, including typhoon and ocean eddy.

Vortex filaments show various kinds of motions. When a filament is deformed from
a straight shape, it continues to deform further owing to the velocity induced by the filament
itself (ARMS and HAMA, 1965; BETCHOV, 1965; HASIMOTO, 1971; TAKAKI, 1975). When
two filaments with the same sense of rotation get near to each other, they are apt to tangle
with each other to form a double helix (CHANDRSUDA et al., 1978; HOPHINGER et al., 1982;
TAKAKI and HUSSAIN, 1984a, b). These motions can be understood in terms of the
dynamics without effect of viscosity (BATCHELOR, 1967), hence its analysis is relatively
simple. A general introduction to vortex dynamics, especially the deformation and
entanglements are given by TAKAKI (1988).

The third type of motion is a quick topological change played by two vortex filaments
with the opposite sense of rotation, when they get near to each other. This motion is called
“reconnection” or “recombination”. Examples of observations of this motion are shown in
Fig. 2. Figure 2(a) shows two trailing vortices from an aircraft, which approached each
other and made successive reconnections to form a street of ring vortices (CROW, 1970).
Figure 2(b) shows an observation in laboratory (HAMA, 1960), where a part of a line vortex
was separated to form a ring vortex through reconnection. Figure 2(c) shows a laboratory
experiment to observe behavior of two vortex rings, which made a reconnection to form a
large ring (OSHIMA and ASAKA, 1977). As is seen from these figures, when parts of vortices
get near, each of those parts is cut suddenly and reconnected to the other. This topological
change of filaments occurs much more rapidly than those of other parts of filaments.

In the next section the basic characteristics of vortex filament are explained. A review
of past researches of the reconnection process is given in Sec. 3, including the cases in other
materials, where similarities of these processes with that in the viscous fluid is discussed.
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Fig. 2.  Observed reconnection processes. (a) Sketch of formation of vortex rings from a photograph by CROW

(1970), (b) separation of a ring shape vortex from a line vortex from HAMA (1960), (c) merging of two vortex
rings from OSHIMA and ASAKA (1977)

In Sec. 4 some results of experiment and computation by the present author are presented.
In the last section essential natures of this phenomenon are noted. This paper includes some
experimental data obtained from the present author but not published yet. However, this
paper is written as a review article, since most of its contents are already known.

2.  Basic Characteristics of Vortex Filament

2.1.  Definition of vortex filament
For definition of the vortex filament it is necessary to define the vorticity vector in a

three-dimensional space. Let the velocity vector in a fluid be denoted by

u x y z t u x y z t v x y z t w x y z t, , , , , , , , , , , , , , .( ) = ( ) ( ) ( )( ) ( )1

Then, the vorticity vector (x, y, z, t) is defined by a differential operation of the velocity
vector as follows:

(x, y, z, t) = rot u(x, y, z, t).                                      (3)

In general, the differential operator “rot” gives the strength of rotation of vector field, and
the vorticity stands for the strength of rotation of a fluid element around its center. Note that
a fluid element does not have a vorticity if it does not rotate around its center, even when
it is moving along a circular orbit. The direction of the vorticity vector is parallel to the
rotation axis and coincides with the direction of the right-screw.

Now, the vortex filament is a distribution of vorticity confined in a thin filament-like
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Fig. 3.  Definition of the circulation. (a) Path integral along the curve C surrounding the filament, (b) surface
integral in a region intersecting with the filament.

region, as is shown by the rough sketch in Fig. 1. This region is called a “core” of the
filament. It can be proved easily, by the use of a formula of the vector analysis, that the
vortex filament does not terminate within the fluid, i.e. it should either terminate at a solid
(or free) boundary or form a loop by itself. In fact the lower end of a tornado is attached
to the earth (or sea) surface. Its upper end is expanding horizontally and should finally reach
the earth at far places.

The vortex with a ring shape is called a “vortex ring” or a “ring vortex”. A vortex ring
can be easily produced by ejection of a small amount of fluid through a circular orifice. If
an elliptic orifice or other types of orifices are used, vortex rings with various shapes are
produced.

Strength of a vortex filament is expressed in terms of a quantity Γ called a “circulation”,
which is defined by a path integral of velocity vector or a surface integral of the vorticity,
as follows:

Γ  = u∫ ·dx = ∫∫ ·dS.                                              (3)

where the path integral is taken along a closed curve surrounding the filament and the
surface integral is taken over a region within this closed curve (see Fig. 3).

If the path is chosen to a circle with the center at the core and the radius r, then the
above path integral gives Γ  = 2πru. It can be proved that Γ does not depend on the choice
of the closed curve if it is located out of the core. This fact shows that Γ is a quantity
characteristic of a vortex filament and that the velocity is inversely proportional to r in the
region out of the core, i.e. u = Γ/2πr.

2.2.  Vortex filament in the viscous fluid
The velocity distribution within the core can not be determined uniquely from the

above definition of vorticity or circulation. It depends on properties of the fluid. In the case
of the viscous fluid the vorticity is nearly proportional to the radius r, as shown in Fig. 1(b).
Then, the vorticity is uniform within the core (proved by the use of Eq. (2)), and the
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Fig. 4.  (a) Side view of a vortex filament in superfluid helium formed in a container, where the core is a hollow
space owing to the strong effect of centrifugal force, (b) a solution of the Gross-Pitaevskii equation for a
vortex filament. The density ρ is defined by the square of absolute value of the wave function. The core size
L has a scale of the inter-molecular distance.

circulation is simply a product of the vorticity ω and the cross section S of the core, i.e. Γ
= ωS.

The radius R of the filament cross section is in many cases grows with time slowly
according to the formula:

R t= ( )ν 4

where ν is the kinematic viscosity defined by ν = µ/ρ (µ is the viscosity and ρ is the density).
Hence, the core cross section grows owing to a dissipative effect.

Since the vortex core is governed by the viscosity, we can guess easily that the
reconnection process is also affected much by the viscous effect. This possibility is
confirmed in the next section.

2.3.  Vortex filament in the superfluid helium
Vortex filament can appear in the superfluid helium, i.e. the liquid helium below the

λ  point (2.18 K). As for the flow field out of the filament there is no essential difference
between the viscous fluid and the superfluid. The peculiarity of the superfluid is that the
circulation is quantized as

Γ = = × ( ) ( )−h

m
1 0 10 53. / cm s2

where h is the Planck’s constant and m is the mass of helium atom. The flow field near the
vortex filament is obtained theoretically by GROSS (1961) and PITAEVSKII (1961) by the use
of the hydrodynamic representation of the Schrödinger equation (called Gross-Pitaevskii
equation). According to their theory the velocity is proportional to 1/r down to the core
center, while the density vanishes at the core center. The core has a magnitude of the
molecular size. The singularity of the velocity field at the center does not lead to a
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Fig. 5.  Extraction of the solar magnetic lines and their reconnection.

difficulty, because molecules do not exist at the center (0 density).
Vortex filament in the superfluid has been observed through the following experimental

procedure. Put the liquid helium above the λ  point (normal fluid) in a small container and
rotate the container. The liquid helium begins to rotate like a solid body rotation (uniform
vorticity) owing to its viscosity. Lower the temperature below the λ  point while rotating the
container. Then, the flow field in the liquid stops suddenly to have a vorticity and discrete
vortex filaments are produced. Through this process the vorticity is not lost but has changed
its distribution from a continuous to discrete one. Mechanism of this change is not
understood yet! It is a rapid transition from a classical state to a quantum state of a system
with macroscopic scale.

2.4.  Magnetic lines in plasma
It is well known that each of the magnetic lines has a tension along itself, while they

produce repulsive forces among themselves. Therefore, magnetic field tends to expand
laterally according to this repulsion. However, if the magnetic lines are formed within a
plasma with high electric conductivity, the magnetic lines may keep a form of thin bundle,
because the magnetic lines are frozen to the plasma and because the plasma will act to hold
the magnetic lines (this situation is called “frozen”). Such a configuration of magnetic lines
and plasma is seen in the solar wind.

When the solar wind is ejected from the sun, the wind extracts magnetic lines from the
solar surface and expands them. But, since the magnetic lines have a tension, they can not
be expanded infinitely. Actually, nearby magnetic lines with opposite directions make a
reconnection process and a separated loops of magnetic lines are produced, which are
allowed to travel far from the sun.

Here it is noted that there is a close similarity between the fluid motion and the
magnetic field in a plasma. If the electric current density in the plasma and the magnetic
field are denoted by i and H, respectively, they are related by a formula (one of the
Maxwell’s equations),

i = rotH, (6)

which is similar to Eq. (2). Similarities of the vorticity field and the magnetic field are
discussed in Subsec. 3.3.
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3.  Mechanism of Reconnection

3.1.  Review of studies of reconnection process in the viscous fluid
Past researches of the reconnection process in the viscous fluid are mostly experimental

and computational ones, and few works have been made theoretically except that by YEH

and AXFORD (1970) for plasma and that by the present author (TAKAKI and HUSSAIN, 1985,
1988). Because the reconnection process is a really complicated problem and theoretical
formulation is quite difficult. In fact the fluid motion in this process is (i) three-
dimensional, (ii) transient, (iii) nonlinear and (iv) dissipative. If any of these factors is
missing, the essential feature of the process is lost. Therefore, analysis of the reconnection
process still continues to be a big challenge for theoretical physicists. Some important
contributions are introduced below. A precise survey on this phenomenon is written by
KIDA and TAKAOKA (1994).

The first report on this phenomenon was made by HAMA (1960), in which a vortex
filament produced in a boundary layer along a flat plate deformed and its small part was cut
apart from the filament (see Fig. 2(b)). However, since this phenomenon was not the main
purpose of his study, it was not described precisely. Next, a street of ring-type vortices was
observed in a pair of trailing vortices behind an aircraft (CROW, 1970). The photograph of
reconnection in this paper was taken by chance (see Fig. 2(a)). The present author also had
a chance to see the same phenomenon, but failed in taking photograph. Experiments aimed
at observing the reconnection were made by KAMBE and TAKAO (1971), FOHL and TURNER

(1975) and OSHIMA and ASAKA (1977). In the experiment of KAMBE and TAKAO (1971) a
single elliptic ring vortex was ejected and production of two or more vortices was observed,
where two parts of the initial vortex approached and made a reconnection. In most of other
experiments, two vortex rings were ejected nearby in the same direction. Then, they made
a reconnection to form a single vortex (see Fig. 2(c)), followed by the second reconnection
process producing two vortex rings again. In these experiments global behavior of vortex
rings were observed by the use of a visualization technique.

Numerical computations of the reconnection process were made by several researchers
(MELANDER and ZABUSKY, 1988; KIDA and TAKAOKA, 1988; ASKMAN and NOBIKOV,
1988; MELANDER and HUSSAIN, 1989). These numerical results agreed well with
experiments, hence it is certain that the vorticity field is actually making a rapid change to
form a new field with reconnected state. Although there is a finding that some fraction of
vorticity in the original vortex filaments remains connected as in the initial state (MELANDER

and HUSSAIN, 1989; KIDA et al., 1991), the main part of filaments are reconnected. At
present there seems to be no active research of the reconnection process, because, probably,
new findings are not much expected compared to the amount of efforts for it.

3.2.  A proposed mechanism of the reconnection mechanism
The theory by TAKAKI and HUSSAIN (1985, 1986, 1988) treats the flow field in a local

region, where the reconnection process is taking place. This region includes the vortex
cores and has a size smaller than the core radius (hatched region in Fig. 6(a)). In such a
narrow region the flow field is looked upon as laminar (not turbulent) and the velocity
distribution can be expressed by relatively simple functions of coordinates.
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Fig. 6.  (a) A rough sketch of the reconnection process, (b) the initial state, (c) superposition of vortex rings on
the initial state, (d) the final state.

The flow behavior in the initial and final states can be estimated by considering the
spatial symmetries of velocity field and the orders of magnitude of velocity components.
Let the initial and the final states include vortex filaments directed nearly to the y-axis and
x-axis, respectively, as shown in Figs. 6(b) and (d). The velocity at the center (the origin)
is directed in the positive z-direction (shown by a thick arrow in Fig. 6(b)). In these states
the x-, y- and z-components of the velocity vector (u, v, w) can be assumed to have
symmetries as shown in Table 1. Note that the both states have the same symmetries, and
that the symmetry with respect to z can not be assumed since the filaments are deformed
into curved lines, which are convex to the positive z-direction owing to the upward velocity
(see Fig. 6(a)).

Next, in the initial state the fluid is moving along circular paths on vertical planes
which is nearly parallel to the xz-plane, hence v should have small values everywhere
around the origin while u and w have no such constraints. Moreover, velocity components
do not depend much on y. In the final state, where the fluid is moving almost in the yz-plane,
u has a small value and velocity components do not depend on x. The component w
continues to have a large value throughout the reconnection process. From these
considerations we can obtain terms of polynomial expansions of components as listed in
Table 1 (for precise see Appendix A).

The vorticity fields in the initial and final states are obtained by the use of Eq. (2) and
the fact that the vorticity is directed initially in the y-direction and finally in the x direction.
Symmetries of vorticity components and possible polynomial terms are given in Appendix
A.
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Table 1.  Symmetries of velocity components with respect to coordinates.

The symbol “—” means no symmetry, and “0th”, “1st”, “2nd” mean possible polynomials up to the second
order of coordinates (a more precise table is given in Appendix A).

Initial state Final state

x y z 0th 1st 2nd x y z 0th 1st 2nd

u odd even — — x xz odd even — — — —
v even odd — — — — even odd — — y yz
w even even — 1 z x2, z2 even even — 1 z y2, z2

Next, it is necessary to give a mechanism for transition from the initial to the final
state. If we observe this process from the z-direction, parts of the vortex filaments going
through the xz-plane should disappear, and new filaments through the yz-plane should
appear to connect the four ends of the filaments. This process can be realized by
superposing a pair of vortex rings on the two filaments as shown in Fig. 6(b), where the
lower vortex ring cancels the parts of filaments going through the xz-plane and at the same
time makes new bridges through the yz-plane. Another vortex ring is necessary for
momentum conservation of the fluid. These vortex rings grow with time, so that its
superposition on the initial state leads to the final state. Moreover, the ring has an
axisymmetry around the z-axis and the magnitude of the velocity is expressed by a
polynomial function of z and r2 = x2 + y2. Polynomial expansion of this ring field u(r) is also
necessary (given in Appendix A).

After all, we can express the reconnection process by the following equation for the
velocity fields:

u(i) + u(r)(t) → u(f). (7)

Here, we make another assumption that the fluid velocity expressed by u(r) proceeds
with time t everywhere with the same pace, i.e. the coefficients in the polynomial
expansions of u(r) depend on t through a single function T(t). Then, the problem is reduced
to obtaining this function by the use of the governing equation for flow field.

The polynomial expansions should be made also for the vorticity components. After
considering their symmetries and orders of magnitude, we can obtain the following
polynomial expansions (for precise see Appendix A):

u = –m(1 – T(t))x + k(1 – T(t))xz, (8a)

v = mT(t)y + kT(t)yz, (8b)

w = w0 – δT(t) + m(1 – 2T(t))z – l(1 – T(t))x2/2 + lT(t)y2/2 + k(1 – 2T(t))z2/2, (8c)

ωx = (k + l)T(t)y – nT(t)yz, (9a)
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ωy = (k + l)(1 – T(t))x – n(1 – T(t))xz, (9b)

∆ωx = gxT(t)y, (10a)

∆ωy = gy(1 – T(t))x, (10b)

where Laplacians of the vorticity components in Eqs. (10a) and (10b) are necessary in
applying the governing equation. The function T(t) should begin with value 0 and
asymptote to 1 for t → ∞.

Equation for T(t) can be derived from the vorticity equation (which is derived from the
Navire-Stokes equation),

∂ /∂t + (u∇ )  – ( ∇ ) u = ν∆ , (11)

where ν is the kinematic viscosity. The second and the third terms of the left-hand side of
Eq. (11) stand for the convection of vorticity by fluid motion and the thinning of vorticity
distribution by stretching, respectively. The right-hand side stands for the viscous diffusion
of vorticity. Substituting the above expansions into this equation, we obtain after some
manipulation the following equation:

dT/dt – t*–1T + t*–1T2 = 0, (12)

where t* is a constant with dimension of time defined as follows:

t* = δn/(k + l) = ν(gx – gy) – 2m. (13)

The solution of Eq. (12), satisfying the boundary conditions T(–∞) = 0, T(∞) = 1, is

T t e et t t t( ) = +( ) ( )
∗ ∗/ // .1 14

Behavior of T(t) is shown in Fig. 7. As is seen from this figure, the flow field makes a
transition within a time scale of t*. In order that t* be positive, we must have gx > gy, i.e.
the Laplacian of the initial vorticity should be larger than that of the final vorticity. It would
mean that the initial vortex filament was thinner than the final one, and that the vorticity
has defused through the reconnection process.

The values of coefficients k, l, m, n and δ remains undetermined except that they have
positive values, as will be seen by careful observation of vortex configuration in Fig. 6.
They could, however, be determined in principle, if the flow field out of the local region
around the origin is given. Therefore, the main result in this anlysis is that the local flow
behavior concerning to the reconnection process can be determined to a certain degree
without knowledge of the outer field. This fact seems to suggest that the local motion in the
reconnection process has a common behavior among situations with different outer flow
fields.
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Fig. 7.  Solution of T(t). t* is a time scale of reconnection process.

By choosing these coefficients appropriately, we can draw vorticity lines (group of the
curve on which the vorticity vector is tangent to it) at each instant of reconnection process,
as shown in Fig. 8. Note that this figure is not showing vortex filaments, but vorticity lines
starting from several points arranged on two circles. However, it depicts well how the
vorticity behaves at the center of reconnection.

The role of viscosity in the reconnection process can be examined in general way by
applying the vorticity equation (11) to the flow field on the yz-plane. If the reconnection
takes place and the final state (Fig. 6(d)) appears, the x component of the vorticity should
grow on the yz-plane. It can be shown that this component can appear only in the presence
of viscosity (see Appendix B). This fact will suggest a general necessary condition for
reconnection processes in various physical systems, i.e. a certain dissipative effect should
play an important role at the region of reconnection. In the following sections, mechanisms
of reconnection are explained based on this idea.

3.3.  Similarity of mechanisms between the viscous fluid and the plasma
The reconnection process of magnetic field in plasma in the 2D space is solved

theoretically by YEH and AXFORD (1970). In this analysis two fields, the inner field around
the center of reconnection and the outer field far from the origin, are treated separately and
then matched to each other. As is shown in Fig. 9, the magnetic lines are convected by
plasma flow (since the magnetic field is frozen in the plasma) in the x-direction, reconnected
in the inner region and convected away to both sides of y-direction. This solution is
stationary and has no dependence on time. Time-dependent and 3D solutions are obtained
later (Terasawa et al., private communication, 1992), but the solution by YEH and AXFORD

(1970) is enough for the present purpose to compare the cases of viscous fluid and magnetic
field.

It is noted here that there are two ways of analogy between the vorticity field and the
magnetic field. One is based on the similarity of Eqs. (2) and (6), where the velocity u
corresponds to the magnetic field H, and the vorticity  to the current density i. In this
analogy, the reconnetion of vortex filaments does not directly correspond to that of
magnetic lines. Another analogy is based on the governing equations of both fields, where
the vorticity is governed by Eq. (11) and the magnetic field in plasma by the following
equation:



222 R. TAKAKI

Fig. 8.  Theoretical results for changes of vorticity lines in reconnection process (from TAKAKI and KAKIZAKI,
1992).
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Fig. 9.  2D motions of magnetic lines (dashed lines) convected by the plasma flow (solid lines). Magnetic lines
are reconnected at the origin. Sketch from the figure in the paper of YEH and AXFORD (1970).

∂H/∂t + (u∇ )H – (H∇ ) u = η∆H, (15)

where η is defined by η = 1/(σµ0), σ is the electric conductivity of the plasma and µ0 is the
magnetic permeability. This equation is derived by combining the Maxwell’s equation and
the fluid dynamical equation along with Ohm’s law. As in the vorticity field, the second and
the third terms of the left-hand side of Eq. (15) stand for the convection of magnetic lines
by fluid motion and the thinning of bundle of magnetic lines by stretching, respectively.
The right-hand side stands for the diffusion of magnetic lines by electric conductivity. By
comparing Eqs. (11) and (15), we can convince ourselves that the magnetic lines correspond
to vortex filaments so long as their dynamics are concerned.

After examination of the solution of YEH and AXFORD (1970), it can be shown that
their inner solution is similar to that obtained by the present author at the time with T(t) =
1/2, i.e. at the intermediate time of reconnection, and at z = 0, if unknown coefficients are
chosen appropriately (TAKAKI, unpublished). Comparison of both solutions are shown in
Table 2.

As seen in this table, both fields correspond to each other quite well, if 1/(cos2β) >>
1, i.e. β � π/4. It is an interesting fact that the vector field A corresponds to the upward
velocity w in the viscous fluid. It has come from the relation of the vector potential vector
(0, 0, A) and the magnetic flux B through B = rotA, which is analogous to Eq. (2).

It should be stressed that the reconnection of magnetic lines is possible only when the
plasma has a finite electric conductivity, i.e. a dissipative effect. This situation corresponds
to the fact that the vortex reconnection requires finite a viscosity, i.e. also a dissipative
effect.
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Magnetic field Vorticity field at z = 0, T(t) = 1/2

Finite conductivity important Viscosity important
2D flow 3D flow
Stationary Time dependent via T(t)
Inner and outer fields matched Inner field only

u = –2γx, v = 2γy u = –mx/2, v = my/2
A = –σµ0E{(x2 + y2) – (x2 – y2)/cos2β}/4 w = –l(x2 – y2)/2
Bx = – σµ0E{1 + 1/(cos2β)}y/2 ωx = ly/2
By = σµ0E{1 – 1/(cos2β)}x/2 ωy = ly/2

Table 2.  Comparison of the solutions of magnetic field (YEH and AXFORD, 1970) and vorticity field (TAKAKI

and HUSSAIN, 1988).

A, Bx, By are the vector potential and components of magnetic flux, respectively.

3.4.  Reconnection of vortex filaments in superfluid
Reconnection of quantized vortex filaments in the superfluid helium has been attracting

interests of scientists. It was once considered to be a main mechanism for production of a
kind of excitation called “roton” in superfluid (FEYNMANN, 1955), but this conjecture is not
supported now. At present, the reconnection is considered to be responsible for quantum
turbulence (turbulent motions of a lot of quantized vortices) in the superfluid (TOUGH,
1982; DONNELLY, 1991). Behavior of quantized vortices are simulated numerically by
(SCHWARZ, 1985, 1988; TSUBOTA and MAEKAWA, 1992). However, there seems to be still
no theory to describe how vorticies can reconnect themselves.

Here, it is suggested that an introduction of a certain dissipative effect into dynamics
of superfluid may allow occurrence of reconnection (TAKAKI, unpublished). For its
explanation we need a hydrodynamic representation of the Schrödinger equation for
helium atoms (GROSS, 1961; PITAEVSKII, 1961). Let one-body wave function of helium
atom and the interaction potential between them be denoted by Ψ and V0δ(ri – rj),
respectively, where δ is the 3D delta function. Then, the Schrödinger equation is written
as

  
i

t m
Vh

h∂
∂

= − ∇ + ( )Ψ Ψ Ψ Ψ
2

2
0

2

2
16.

Next, from Ψ and its phase S, we define the density and the velocity of superfluid as
follows:

  ρ r m r m S( ) = ( ) = ( )∇ ( )Ψ 2 17,    / .u h

Substituting Eq. (17) into Eq. (16) we obtain after some manipulations the following
equations for ρ and u:



Reconnection of Line Singularities 225

  

˙ ,

˙ ,

ρ ρ

ρ
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ρ

+ ∇ ( ) =

+ ∇( ) = −∇ −
∇











≡ −∇ ( )

u

u u u

0

2

180
2

2

2

2V

m m
P

h

where the first equation has the same form as the continuity equation for the ordinary fluid
and the second is essentially the Euler’s equation (an equation for inviscid fluid) with
pressure P. Therefore, the motion of superfluid governed by Eq. (18) has no dissipative
effect, and the reconnection will not be described with this equation.

Behavior of superfluid with a finite temperature (below the λ  point) is often described
by the so-called two-fluid model, where the fluid is looked upon a mixture of a super part
with density ρs and a normal part with density ρn. The both parts can have different flow
velocities, say us and un. Since the superfluid is composed of a single material, helium
atoms, this decomposition into both parts is merely a phenomenological model. However,
it is a convenient model for describing various phenomena, such as the second sound (a
wave transmitting the entropy). It is sometimes assumed that both parts receive a mutual
friction, so that the force on the unit volume of the super part is written as follows:

f = ρsρn{A(un – us) + B|un – us|
2(un – us)}, (19)

where A and B are positive constants.
Since Eq. (18) is looked upon as a governing equation for the super part, u in Eq. (18)

is replaced with us. Here, an assumption is made as to the behavior of the normal part in
a region near to vortex filaments. Since un is much weaker than us, which is inversely
proportional to the distance from the core center (this distance is comparable to the inter-
molecular distance), the velocity of the normal part, which is always suppressed by the
viscosity, can be negligible, hence we can assume un = 0 and ρn = const. in the region of
reconnection.

Now, by adding the above frictional force to the right-hand side of Eq. (18) and making
a differential operation “rot” on both sides of it, we have the following equation for the
vorticity  = rotus:

∂ /∂t + (us∇ )  – ( ∇ )us
= –ρsρn{A + B|us|

2}  – A∇ (ρsρn) × us – B∇ (ρsρn |us|
2) × us. (20)

We try to speculate on the effects of these terms in the region between two oppositely
directed vortex filaments, as shown in Fig. 10. The second and the third terms in the left-
hand side of Eq. (20) are convection and stretching terms, which are not important here. The
first term in the right-hand side is directed always opposite to the vorticity, hence it is a
decay term due to the mutual friction. The second term in the right-hand side is also a decay
term, because the gradient ∇ (ρsρn) is directed outwards from the core center (see Fig. 4(b))
and its vector product with us (circulating around the core) is directed opposite to . On the
other hand, the third term is effective for reconnection, as is seen from the following
consideration. If the filaments are curved convex to the origin (see Fig. 10(a)), the vertical
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velocity on the yz-plane increases towards the origin and the gradient of (ρsρn|us|
2) is

directed to the origin. Then, its vector products with us at the points P and Q in Fig. 10(a)
produce vorticities directed rightward and leftwards, respectively. Thus, bridges are
produced at these points to reconnect the filaments, as shown in Fig. 10(b).

This story of vortex behavior seems promising for explanation of reconnection
process in superfluid helium. But, it contains some difficulties. First, the change of
vorticity described above contradicts with the general idea of super part, i.e. it is an inviscid
fluid and vorticity should not appear owing to the Kelvin’s vorticity theorem. Secondly, the
change of vorticity contradicts with the concept of quantized circulation given by Eq. (5).
Therefore, the above speculation must be replaced by a proper analysis of vortex behavior
with quantum jump, where an interaction between the filaments and certain kinds of
excitations with vortical nature should play an important role.

3.5.  Reconnection of disclinations in liquid crystals
Liquid crystal is a material made of molecules with coherence in their orientations.

Distribution of the orientations is expressed in terms of unit vector, called a director. Note
that each director is like a line segment and not like an arrow, because the molecule has no
distinction with its reversed state. However, the director distribution has a close analogy
with the velocity field of inviscid fluid.

In the 2D director distributions, where the directors are parallel to a plane, say xy-
plane, components of director (u, v) are expressed in terms of a harmonic function φ(x, y)
as follows:

u = cosφ,   v = sinφ,   where ∆φ = 0. (21)

It can be proved that the director field has the minimum elastic energy of bending when φ
is a harmonic function (FRANK, 1958). Director configuration around a singular point of φ
is called a “disclination”. A group of solutions of the Laplace equation ∆φ = 0 including
disclinations is given by

Fig. 10.  Growths of a rightward and a leftward vorticities at the points P and Q, respectively, which lead to a
reconnected configuration of vortices.
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φ ψ φ ψ φ= + = = ( )n y

x2
220 0, tan , .const

Some of the solutions are shown in Fig. 11.
Since the elastic energy of director field is concentrated in the local region around a

disclination, the total energy is nearly proportional to the total length of disclination. Then,
the director field will make a transition to a state with lower energy, i.e. the state with
smaller disclination length, if it is attained through a reconnection of disclinations.
Although existence of the reconnection process is suspected (NAGAYA et al., 1992),
mechanism of this process is not well understood. If an analogy with viscous fluid is
allowed, superposition of a certain kind of thermal fluctuation with a ring shape, as shown
in Fig. 11(b), might be one possibility for the mechanism.

4.  Experiment and Numerical Simulation of Reconnection in Viscous Fluid

4.1.  Experimental observation of vortex behavior
The proposed local dynamics in the reconnection process has been confirmed through

an experiment and a numerical simulation by the present author and his colaborator
(KAKIZAKI, 1990; TAKAKI and KAKIZAKI, 1992). The purpose of the experiment was to
measure velocity change during the reconnection process. The experimental apparatus is
shown in Fig. 12.

Fig. 11.  (a) Some typical director fields with 2D nature. Sketches from figures in the paper of FRANK (1958),
(b) a speculative sketch of reconnection process.
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Two vortex rings were ejected upwards side-by-side from two orifices by pushing the
air by a large loud speaker. The two vortex rings made the first reconnection to produce a
single elliptic vortex, which were separated through the second reconnection to two vortex
rings. These motions were visualized by adding oil mist to the lower reservoir. Flow
velocity was measured by the use of a laser-Doppler velocimeter.

Visualized behavior of the ejected vortices is shown in Fig. 13, which is the same as
observed by OSHIMA and ASAKA (1977). In this figure the stage (a) is just after ejection,
(b) in the first reconnection, (c) a new born elliptic ring and (d) in the second reconnection.

The vertical and the horizontal components of velocity on the xz- and yz-planes were
measured, where the xz-plane contained the centers of both orifices and the yz-plane was
set between two orifices. From these velocity components we calculated the vorticity
component perpendicular to these planes. In Fig. 14 maps of velocity and vorticity
components are shown for three stages of reconnection process. At the stage shown in Fig.
14(a) the fluid was circulating in the xz-plane, and correspondingly the vortex filaments
were intersecting with the xz-plane, which corresponded to the stage (a) in Fig. 13. At the
stage shown in Fig. 14(b) a circulating flow and a vorticity appeared in the yz-plane, (stage
(b) in Fig. 13). Figure 14(c) shows the stage where the first reconnection was over, where
a new elliptic ring intersected both with xz- and yz-planes (stage (c) in Fig. 13). This
behavior of vorticity was also cinfirmed by ontaining circulations during the first
reconnection, as shown in Fig. 15. In this figure, the two curves for the circulations Γxz were
obtained for the two circulating motions in the xz-plane, while Γyz was from that in the yz-
plane. We can see from this figure that the decreases of Γxz were associated with an increase
of Γyz showing the reconnection of filaments.

Fig. 12.  Experimental apparatus.
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Signals of upward velocity component at two points on the center line are shown in
Fig. 16. The data in Figs. 16(a) and (b) were taken at points before reconnection and during
reconnection, respectively. At each point signal input was repeated number of times and 20
of them are shown here. As is seen from these figures, the signals before reconnection had
a very good reproducibility, which would mean that the vortices had behaved quite
regularly. On the other hand, the data during reconnection had a certain degree of
fluctuation. This fluctuation suggests irregular motion of fluid during reconnection. This
irregularity is considered to be consistent with the idea expressed by Eqs. (7) and (14), i.e.
the reconnection proceeds by superposing a field u(r)(t), which grows exponentially from
an initial small value. This type of growth is common among unstable disturbances, which
are influenced sensitively by background noises. In the present experiment varying flow
field might have been influenced much by weak noisy background flow, leading to these
fluctuating signals.

4.2.  Computation of vorticity behavior
Numerical computation of reconnection process was made for the same boundary and

initial conditions as in the experiment explained above (KAKIZAKI, 1990; TAKAKI and

Fig. 13.  Observed behavior of vortex rings from visualization pictures (from KAKIZAKI, 1990). Stages (a), (b),
(c) correspond to those shown in Figs. 14, 16 and 18.
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KAKIZAKI, 1992). In the computation the difference scheme with the Crank-Nocolson
method was applied. As an initial condition was that the fluid was at rest everywhere. As
the boundary condition a uniform but time-dependent inlet flow (fixed after the experimental
data) was assumed on the two orifice regions and zero velocity gradients was given at the

Fig. 15.  Variations of circulations of vortices on xz- and yz-planes. Two vortices on the xz-plane were treated
separately (from KAKIZAKI, 1990).

Fig. 16.  Velocity signals at two points on z-axis, (a) before reconnection, (b) during reconnection (from
KAKIZAKI, 1990).
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Fig. 17.  Computed behavior of vortex rings, where absolute value of vorticity is shown by the dot density (from
KAKIZAKI, 1990).
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upper exit for a certain period. After this period zero velocity was given on all boundaries.
Figure 16 shows the computed behavior of vortex rings, where the absolute values of

vorticity is shown by the dot density. This behavior confirms the visualization by the
present author (Fig. 13) and that by OSHIMA and ASAKA (1977). This figure reveals more
precise behavior of vorticity than the sketch (Fig. 13), i.e. weak bridges remained
maintaining the original vortex filaments partly, even after reconnection. This behavior has
been found by several researchers (MELANDER and HUSSAIN, 1989; KIDA et al., 1991). But,
in this paper this phenomenon is not discussed more, because it means an incomplete
occurrence of reconnection and is out of the interest of this review.

Figures 17(a), (b) and (c) are computational results for the velocity and vorticity
distributions at instants corresponding to the experimental results shown in Fig. 12. Their
agreement is obvious and it confirms once more the reality of reconnection process. The
difference of aspect ratios (ratios of horizontal and vertical sizes) of spaces between the
experimental data and computational result is due to a restriction in the test section of the
apparatus. We can see slightly faster upward movements of vortices in the computation.

Fig. 18.  Computational results for the velocity and vorticity distributions at instants, (a) before reconnection,
(b) during reconnection and (c) after the first reconnection (from KAKIZAKI, 1990). These three instants
correspond to the three stages in Fig. 17 and also to the experimental results shown in Fig. 14.
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This difference is caused by the rather simplified boundary condition in the computation.
The real inlet flow at the orifices was not uniform but had a velocity distribution within the
orifice region, while the computation allowed a sharp cut of velocity at the orifice edge
which produced a thinner vortex filament. Since thinner vortex filaments move faster, this
difference of vortex behavior is well understood.

4.3.  Comparison of the experiment with the theory
The experimental results explained above can be compared with the theory introduced

in Subsec. 3.2. Since the theory is concerned with the flow in a local region where
reconnection is taking place, it must be compared with the data on the z-axis in the
apparatus (see Fig. 10). Here, the upward velocity w(0, 0, z, t) in Eq. (8c) is compared with
experimental data. The unknown coefficients in this solution are fixed so as to have the best
matching, i.e. w0 = –3.5, δ = –5.5, m = 0 and k = l = –6. Note that these values are all negative
while they are positive in the theory. It comes from the difference of vortex configurations
between experiment and theory. The two vortex rings in the experiments produced
downward velocity at the point of touching, where the reconnection took place, while in the
theory the vertical velocity at the origin directs upwards initially.

By assuming these values for coefficients, we have a fairly good agreement between
theory and experiment, as shown in Fig. 19. The rather flat distributions of velocity in the
experiment, especially after reconnection (t > 2), would be due to the rather complicated
behavior of vorticity in the experiment. Such a behavior is not considered in the theory.
However, this agreement shows that the theory given in Subsec. 3.2 is also catching an
essential feature of reconnection at least in a narrow region where it is taking place.

Fig. 19.  Comparison of variations of w (z) on the z-axis between theory (solid line) and experiment (circles).
Values of coefficients in the theory are fixed as w0 = –3.5, δ = –5.5, m = 0, k = –6.
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5.  Discussion

In this review a general introduction to the interesting and still mysterious phenomenon
called “reconnection” is given by taking examples from various physical systems. They
have some common natures as listed below, which would lead to a common understanding
this phenomenon although they are governed by different dynamical equations.

(i) The reconnection process is three-dimensional, transient, having a nonlinear
nature and associated with dissipative effect, as is noted in Subsec. 3.2. Its dynamics will
not be captured well, if any of these is lacking.

(ii) In the central region, where the reconnection is taking place, the effects of
dissipation and nonlinearity (the convection effect in the case of viscous fluid) are playing
equally important roles.

(iii) The convection effects are similar among different systems, while the dissipative
effects depend on the nature of materials. In the case of viscous fluid and magnetic field
in plasma the dissipative effects are expressed by the second derivatives of field variables
associated with viscosity and conductivity. This mathematical nature makes their effects
confined within a narrow region (called an inner region). On the other hand, in the cases
of liquid superfluid and crystal, the dissipative effects are not well understood.

Some suggestions are given as to the future developments of researches of the
reconnection process. The theory for the viscous fluid explained in Subsec. 3.2 is still far
from satisfaction, because it treats only a central region of reconnection. It should be
extended to the outer region or at least to the margin with it.

As for the superfluid and liquid constructing dynamics of thermal excitations with
filament type seems to be a key point. Macroscopic equations available at present, such as
the time-dependent Ginzburg Landau equation, would not be capable of treating the
reconnection process, because it does not govern local and rapid transient states. Theories
containing microscopic (or at least mesoscopic) processes explicitly are wanted, where
microscopic thermal excitations may play an important role associated with certain kinds
of quantum jump. A new theory might be analogous to the Langevin equation (a basic
equation for the Brownian motion of small particles). Theoretical developments of the
reconnection processes with drastically new ideas are expected to develop in future.

Appendix A

The procedure to determine possible terms of expansions for velocity and vorticity
components are explained here briefly.

Table 1 in Subsec. 3.2 gives the possible terms for velocity components up to the
second order, which satisfy required symmetries and magnitudes of components. By
adding the terms for the superposed vortex ring and vorticity (also Laplacian of the
vorticity) Table 1 is extended as shown in Table A1. The vorticity components and their
Laplacians can be obtained from the velocity components by applying differential operations.
But, they are considered separately in the table, because only polynomials up to the second
are considered. Relations between coefficients are fixed later.

Coefficients of polynomial expansions listed in Table A1 are related each other by
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applying some relations for velocity and vorticity. They are definition of the vorticity (Eq.
(2)), the continuity equation divu = 0 in each of the flow fields u(i), u(f), u(r) and the
asymptotic condition (Eq. (7)). Thus, we obtain finally the expressions given in Eqs. (8)–
(10). These manipulations are rather complicated, and the precise is given in the paper by
TAKAKI and HUSSAIN (1985).

Appendix B

It is shown here that the effect of viscosity in the region between the initial vortex
filaments, which leads to reconnection of those filaments.

The symbol “—” means no symmetry or no term. “0th”, “1st”, “2nd” mean possible terms up to the second
order polynomials. zr in the lower column is the average height of the two vortex rings and symmetries in z
direction are shown with respect to this level.

Table A1.  Symmetries of velocity and vorticity components with respect to coordinates.

Initial state Final state

x y z 0th 1st 2nd x y z 0th 1st 2nd

u odd even — — x xz odd even — — — —
v even odd — — — — even odd — — y yz
w even even — 1 z x2, z2 even even — 1 z y2, z2

ωx even odd — — — — even odd — — y yz
ωy odd even — — x xz odd even — — — —
ωz odd odd — — — — odd odd — — — —

∆ωx even odd — — y even odd — — y

∆ωy odd even — — x odd even — — x

Superposed vortex ring

x y z 0th 1st 2nd

u(r) odd even even — x —
v(r) even odd even — y —
w(r) even even odd — z – zr —

ω(r)
x even odd odd — — y(z – zr)

ω(r)
y odd even odd — — x(z – zr)

ω(r)
z odd odd even — — —

∆ω(r)
x even odd odd — — y(z – zr)

∆ω(r)
y odd even odd — — x(z – zr)
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The x component of the vorticity equation (11) is applied to the x component of
vorticity on the yz-plane. This equation, then, is written as follows:

∂
∂







= − ∂
∂

+ ∂
∂

+ ∂
∂







+ ∂
∂

+ ∂
∂

+ ∂
∂







+ ( ) ( )ω ω ω ω ω ω ω ν ωx x x x
x y z xt

u
x

v
y

w
z

u

x

u

y

u

z0 0
0
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where the suffix 0 indicates the value on the yz-plane.
From the assumed symmetry for the initial state (see Table A1 in Appendix A), we

have u = 0, v = 0 and ωx = 0 on the yz-plane, hence the first and the second terms in the right-
hand side of this equation vanish, and we have

∂
∂







= ( ) ( )ω ν ωx
xt 0

0
∆ . A2

This equation means that a new vorticity on the yz-plane, which should connect two
initially separated filaments, does not appear without the viscosity.

On the contrary, if we have a viscosity, the required vorticity, i.e. ωx can appear on the
yz-plane, which can be explained as follows. As is seen from Fig. 6(b) the values of ωx in
the region y > 0 is positive on both sides of yz-plane, and zero on it. Then, it has a minimum
value on this plane and its Laplacian becomes positive. Thus, according to Eq. (A2),
positive ωx begins to grow on the yz-plane for y > 0. In the region y < 0, a negative ωx appears
on the yz-plane. Note that these signs of ωx match to the direction of vorticity in the final
state.

Once ωx has appeared on the yz-plane, the first and the second terms of Eq. (A1) begins
to work, and after some complicated mechanisms the final state shown in Fig. 6(d) is
attained. The intermediate stage before the final state is modeled in this paper by a
superposition of two vortex rings on the initial state.
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