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Abstract. In problemsto find the minimum or maximum of atarget function under given
constraints, attention has been paid to the final solution. Processes |eading to the solution
are often not of interest. Here we examine the paths and their variations leading to the
solution of an optimization problem of the shape of aclosed curvein aplane. The problem
we deal withisto find the smoothest curve among curves whose length and enclosed area
are given. We use the method of vertex dynamics where behavior of vertex coordinates
isdescribed by simultaneous partial differential equationsincluding apotential term. We
obtain, through intermediate patterns consisting of five, four and three lobes, finally a
pattern consisting of two lobes. In the process of the pattern change, we observe fusing
lobes (two neighboring lobes merge into one), retracting lobes (alobe is drawn back into
abody) and their intermediate types. Mechanisms of fusion and retraction are discussed
with respect to the minimum bending energy under the given constraints.

1. Introduction

There are many types of optimization problems, e.g., an isoperimetric problemto find
a closed curve of a given perimeter that encloses the greatest area. In such problems,
attention usually has been focused on the final shape of the optimal solution. For example,
CANHAM (1970) has explained the biconcave discocyte of the red blood cell by the
principle of least total curvature of the erythrocyte membrane under the condition of the
constant surface area and volume. HELFRICH (1973) has formalized the problem of the
shape of avesicle (aclosed bilayer film) as aconditional problem of variation. According
to this formalization, a catalogue of the axisymmetric vesicle shapes has been presented
(DEULING and HELFRICH, 1976) and static equilibrium configurations of the vesicle shapes
have been examined (JENKINS, 1977). Transformation among different shape of vesicles
has also been investigated (SEIFERT et al., 1991). However, in these investigations,
attention has not been paid to intermediate shapes, but only to the final shapes.

In the present paper, we will investigate what intermediate shapes a given initial
pattern takes in the process of reaching the optimum shape in the two-dimensional space.
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The investigation of intermediate shapesis closely related to the production of glassware
from molten glass, baking of aroll from kneaded dough, and making pottery from kneaded
clay. Ingenuity in shape change of viscous material s has been accumulated empirically, but
has not been considered systematically or mathematically. Continuous shape change
including intermediate shapes should be extensively studied in the research field of
“Science on form”.

Consider a flexible wire of fixed length formed into a closed curve in the two-
dimensional space so that the constraint of afixed length of perimeter holds. In addition,
afurther constraint is to keep the area enclosed by the perimeter at a constant value. The
flexible wire changes its shape so that the total bending energy becomes the minimum.
Progression towardsthefinal shapeisexamined by computer simulations. We useamethod
of vertex dynamics developed in materials physics for study of an aggregate of crystal
domains of metal or alloy, or an aggregate of soap froths (NAGAI et al., 1988, 1990;
KAawAsaKI etal., 1989; FucHIzaKI et al., 1995; NAGAI and HONDA, 2001). A closed planar
curve is approximated by a polygon consisting of vertices linked by straight segments.
Movement of the verticesisdescribed by simultaneous partial differential equationswhere
forces at vertices are represented by partial differential coefficients of a potential with
respect to position coordinates. The potential consistsof termsof bending energy along the
polygon, deviation from a given periphery length of the polygon, and deviation from a
given areaof the polygon. That is, vertices move so that the potential decreases under the
condition of allowance of slight increase of the bending energy, slight deviationsfrom the
given periphery length, or slight deviationsfrom the given enclosed area. For example, the
polygon istemporally allowed to deviate slightly from the given periphery length in order
to decrease the bending energy.

TheMonte Carlo method hasalready been used for investigation of the processleading
tothe optimal state of the plane curve under the constraints on the peripheral length and the
enclosed area (LEIBLER et al., 1987; MORIKAWA and SAITO, 1994; MORIKAWA et al.,
1997). The Monte Carlo method involves random fluctuations, so resultsfrom this method
should be evaluated after averaging procedures. On the contrary, the vertex dynamics used
heregivesdeterministicresultsthat areappropriatefor our purposetoinvestigateintermediate
shapes.

Although we expected the curve to show multifarious shapes along the process
towards the final state, the shape of the curve typically undergoes only two changes of
fusion and retraction and their intermediates. The closed curve consists of several |obes,
and two neighboring lobes fuse into one lobe or a protruding lobeisretracted into a body.

2. Methods

2.1. Vertex dynamics

A closed curve are approximated by a chain consisting of many vertices linked by
straight segments. We use a method of vertex dynamics that has been developed in
materials physics. Thereisaseriesof verticeslinked by straight segmentsforming aplane
closed chain in viscous fluid. Behavior of vertex i is described by equations of motion as
follows,
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r’%:—ﬂiU (i: 1 .., N) (1)

where npisacoefficient of viscosity of thefluid and x; isthe position vector of vertexi. The
chain contains N vertices. The equations do not have an accel eration term because vertices
do not havemass. U isapotential and consistsof four termsof U, , Ug, U, and U asfollows,

The length of perimeter L, and the enclosed area S, are given. U, isasquare of difference
of the perimeter length from the given length of the perimeter (L;). Ug is a square of
difference of the area from the given area S,. U, is a deviation of respective length of
segmentsfrom the standard segment length. U correspondsto atotal bending energy along
the chain. k;, kg k; and ky are weight constants which are related with the modulus of
elasticity in mechanics.

When L is the sum of the length of the segments (3l;), Sis the areathat is enclosed
by the segments, and |, is the length of each segment, each term of the right-hand side of
Eq. (2) isgiven asfollows,

U, = (L- Lo o

=(s-g)’ (4)
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Up of Eq. (6) is an approximation of the bending energy (EI/2)](1/RiZ)ds of acurved
flexible wire by aseries of segmentsasshowninFig. 1. Here, sisdistanceaongthecurve.
E is Young's modulus of elasticity of thewire, | is the moment of inertia, R; corresponds
totheradiusof curvatureat vertexj. |; isthelength of each line segment, that i, the distance
between vertex j and vertex (j + 1). Vertex 0 and vertex (N + 1) correspond to vertex N and
vertex 1, respectively, because vertex 1 and vertex N are neighbors with each other.

2.2. Non-dimensionalization

WeuselL,asanew length of unit to make Eq. (1) dimensionally homogeneous. Based
on the new unit, the system will be rewritten throughout. Each variable is expressed with
prime (') based on the new unit and we get the following relations,
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Fig. 1. A curve approximated by achain of segments. Segment |; links vertex j with vertex j + 1. Point O is the
intersection of two perpendicular bisectors of segments|;_, and I;. R, corresponds to the curvature radius at
vertex j.
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Using these relations, Eq. (1) finally takes the form
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In driving this equation, the following relations have been used.
2
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We should note that equation explicitly does not have a parameter corresponding to k; . So

we can reduce one parameter without loss of generality.
Hereafter, we omit prime (') on the variables in the equation. After we perform the

same procedure to the equation of dy;/dt, we obtained following equations.
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Fig. 2. Method to make an initiation of pattern change. A perturbation is given by elongation of a segment.
Vertices are represented by solid circles. a) Arrowhead denotes a position where the perturbation is given.
b) A segment iselongated by displacement of thetwo vertices. Thetwo verticesmovefor 80% of the original
segment length, respectively.

wherei =1, ..., N, and }; denotes the sum taken over j = 1 to N.

We carried out computer simulations with various values of parameters kg, k; and k.
A reasonable pattern was obtained when kg = 1000, k; = 10 and ky = 1/6000, where the
second term and the third term in right-hand side of Egs. (7) and (8) were similar order of
valuesto that the first term (107°). That is, these three terms homogeneously contribute to
the potential U. For thelast termin Egs. (7) and (8), when ky > 1/6000, the bending energy
of the system decreases in the process of simulations, but the pattern deviate greatly from
the constrainson the perimeter length and the enclosed area. Such deviation does not occur
when ky < 1/6000. The larger the ky value, the more sensitively the bending deformation
contributes to the potential U. The large ky value is preferable for our purpose. Then, we
chose kp = 1/6000 because of the largest ky value within the kg value that does not makes
great deviation from the constrains.

The Runge-Kutta method (ToGAwA, 1981) was used for numerical calculations of
Egs. (7) and (8) with step sizeh =1 x 10°to 1 x 107

2.3. Perturbation to make an initiation of pattern change

Itis hard for patterns with high symmetry to change shape into another symmetrical
patternin simulations. We made an artificial perturbation, that is, we give to such patterns
aninitiation of deformation asshownin Fig. 2. Length of a sel ected segment was extended
by displacement of the two neighboring vertices. The artificial perturbation raised the
potential U by about 0.010.
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Fig. 3. Experiment of shape change of aclosed |oop of plastic tape by Brailsford. A closed loop of plastic tape
is sandwiched between two parallel flat plates. There are two suction holes in the lower plate, and the
pressure in the space enclosed by the loop and the two platesisreduced (based on figure 2 in BRAILSFORD,
1983).

2.4. Computers

A digital computer Alphaserver DS10 (Alpha processor, Digital UNIX V4.0F,
Compag Computer Corp., USA) was used for numerical calculation. Computer program
waswritten by C-language and cal cul ation was performed with doubl e precision. Cal culation
was terminated when decreasing rate of U becomes smaller than 0.05% in the last 10,000
steps. A personal computer (PC/AT compatible, Pentium 111 750 M Hz processor, Windows98
SE, Takagi Industrial. Co., LTD., Sizuoka, Japan) was used for graphic display. Unix
environment was introduced to Windows by a software cygwin (Red Hat Inc., USA, http:/
/cygwin.com/). A graphic library glscwin was used, which is a Windows version of a
graphic library GLSC (Graphic Library for Scientific Computing by Ryo Kobayashi,
Daisuke Takahashi, Hiroshi Nakano, Junta Matsukidaira. ftp://ftp.st.ryukoku.ac.jp/pub/
ryukoku/software/math/).

3. Results and Discussion

3.1. Experiment with a closed loop of plastic tape

In the present paper we dealt with the optimization problem what closed curve hasthe
minimum bending under the restricted condition of given constant curve length and
constant area enclosed by the curve. There was an experiment corresponding to this
optimization problem. A closed loop of plastic tape was used in the experiment as shown
inFig. 3(BRAILSFORD, 1983). The closed loop of plastic tape was sandwiched between two
parallel flat plates. The upper plate was transparent. There were two suction holesin the
lower plate, and the pressure in the space enclosed by the loop and the two plates was able
to bereduced. The loop was sufficiently flexible so to decrease the enclosed areawith the
reduced pressure. The length of the loop does not change during the pressure reduction.
When the pressure of the space was maintai ned constant, the shape of theloopisconsidered
to become the shape with the minimum bending energy.
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Fig. 4. Comparison of the shapes of the closed loop between the experimental result and the result by the
computer simulation. The experimental results (thin line, after figure 3(a) in BRAILSFORD, 1983) are
superposed with the results obtained by the computer simulations (thick line connecting points). Vertex
number (N) in the computer simulation is 30. h = 1 x 10~ Figures are normalized sothat Lo = 1. 8) & =
0.04833, simulation time (t) is 10; b) §, = 0.03347, t = 100; c) S, = 0.02955, t = 1000.

The experiment showed that the reduction of the pressure causes changes of the loop
shape from acircleto an oval, then a pattern consisting of two lobes. Three patternsin the
process of pressure reduction were reported (thin linein Figs. 4a—c). We investigated how
closely we can simulate these experimental patterns by using the vertex dynamics which
we described in “Methods”.

The three patterns were respectively approximated by a polygon consisting of 30
verticeslinked by segments of similar length. Coordinates (x;, y;) of vertices on the curves
of the experimental results were obtained, and the total curve length and the area enclosed
by the curve were calculated. The total curve length was normalized to be 1 (=L,) by
scaling. The area enclosed by the curve was S, after the normalization. The normalized
pattern was used as an initial condition of the vertex dynamics, and we proceeded the
process of decreasing U by the vertex dynamics. After many steps of the simulation the
patterns did not change almost, which are shown in Fig. 4 (points linked by thick line).
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Fig. 5. Simulations with two different initial patterns. Each initial pattern has the same perimeter length L, =
1 and the same area S, = 0.0340. Vertex number (N) in the simulation is 40. Numerals are time (t) of the
computer simulation. a) Shape change of an ellipse pattern. The ratio of minor axisto major axisis 0.189.
h =1 x 107%. b) Shape change of a cup shaped pattern. The cup shape is enclosed by small and large semi-
circles. The pattern is uniquely determined in mathematics when S, and L are given. Forty vertices were
arranged so that neighboring segments do not make sharp angle. h = 1 x 107,

The three patterns of different size (S,) are shown in Figs. 4a—c. These patterns from
the computer simulation (thick line with points) were close to the actual shapes (thinline).
Theresult suggeststhat actual patterns by the experiment have the shape with the minimum
bending energy. Among the three patterns (a, b and c), coincidence between the actual
shape and the simulation result of pattern is not good for pattern ¢ in comparison with
patternsaand b. When curvature of theloopislarge, thicknessof the plastic tape may cause
the discrepancy between the actual shape and the simulated pattern. For the simulationsin
the present paper, unless indicated otherwise, we use the restricted condition of constant
perimeter length and area of the pattern of Fig. 4b (S§,=0.0340 and L, = 1).
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Fig. 6. Mannersof changesof thearea(S,) and the perimeter length (L) in simulationswith theinitial conditions
of circle. The initial condition (circle) changed its enclosed area or its perimeter length during computer
simulations. a) The area enclosed by the perimeter (S;) was linearly reduced from 0.07941 to S,. The
perimeter length was consistently maintained constant (L, = 1). After t = t,, the area was maintained
constant, Sy,. b) The perimeter length (L) wasincreased from L, to 1. The areawas consistently maintained
constant (S, = 0.0340). These two mannersfinally produced the same restricted condition as that of Fig. 4b
(5 =0.0340 and Ly = 1).

3.2. Pattern change under the constrains on constant perimeter length and constant area

When the perimeter length and the area of the closed curve are fixed, we obtained the
pattern consisting of two |obes having the minimum bending energy. The pattern was close
to that by the experiment with the plastic tape. In general, only under the constrains on
constant perimeter length and area, a closed curve shows multiple shapes. When the
condition of the minimum bending energy is introduced, the pattern is defined. We
examined whether or not typical two patterns with given perimeter length and area, an
ellipse pattern and a cup shaped pattern change into the same pattern.

The top figure of Fig. 5a shows an approximated pattern of an ellipse (ratio of minor
axisto major axisis 0.189) by apolygon consisting of vertices. The given perimeter length
and the given area are the same as those of Fig. 4b. Figure 5a shows a sequential results of
the simulation where numerals are time (t) of the computer simulation. Astime passes, the
elliptical pattern gradually swells at right and left protruding ends (t = 0.039), then,
concavesat top and bottom (1.0), finally, it becomesapattern consisting of two lobes (2.0).

Figure 5b shows aresult obtained by the simulation started with a cap shaped pattern.
Right and left ends swell gradually (t = 0.1). The upper convex curveisgradually flattened
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Fig. 7. Shape change simulation from a complete circle. @) The perimeter length was consistently maintained
constant (L, = 1). The area S, was reduced as described in Fig. 6a (S, = 0.0340. ty = 10). b) The areawas
consistently maintained constant (S, = 0.0340). The perimeter length was increased as described in Fig. 6b
(Lgp = 0.6526. t, = 77.2). Numerals are time (t) of the computer simulation. Vertex number (N) in the
simulation is 40. Steps size of the simulation (h) is1 x 107,
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(3.2), furthermore, it becomes concave (7.0). Finally the pattern hastwo hollows at top and
bottom symmetrically, that is, the pattern consisting of two lobes (100.0).

An elongated pattern (ellipse) without concaves (Fig. 5a) and a pattern with one
concave (Fig. 5b) both changed into the pattern with two |obes as the experimental pattern
of Fig. 4b. Theseresultssuggest that multiple patternswith given constant perimeter length
and constant area all become the same pattern consisting of two lobes under the condition
of the minimum bending energy.

3.3. Shape change starting with a circle

Among closed curve patterns, acircleisthe perfect symmetric shape and has the most
homogeneous distribution of bending energy. Under the condition of the given constant
perimeter length of closed curve, requirement of smaller areaenclosed by the curve causes
deviation from the perfect symmetry. How doesthis process proceed? Weinvestigated two
processes: reducing the area of a circle while the perimeter length isfixed and elongating
the perimeter length of a small circle while the area s fixed.

For reduction of the area of acircle with the fixed constant perimeter length, the area
was planed to be changed as shown in Fig. 6a. The perimeter length was consistently
maintained constant (L, = 1). The area enclosed by the perimeter was linearly reduced to
that of the experimental result of Fig. 4b (§,; = 0.0340), and then, maintained constant.
Result of the computer simulation is shown in Fig. 7a.

Although the circle reduced its area under the constrain on constant perimeter length,
it did not find a clue to break the symmetry. Thus, it was forced becoming a small circle
(t=8.5). After that, it becomesasquare-like pattern with four round corners(9.0), and then,
has four hollows (9.3), finally becomes a pattern consisting of four |obes (30).

Next, for elongation of the perimeter length to L, = 1 with the fixed constant enclosed
area, the length was changed as shown in Fig. 6b. The perimeter length was linearly
elongated from that of acompletecircle (Ly,=0.6526) tothesimilar length of Fig. 4b (1.0),
and then, maintained constant. The area was consistently maintained constant (S, =
0.0340).

Result of the computer simulation is shown in Fig. 7b. Although the simulation
proceeded, the circle did not find a clue to break the symmetry (t = 60). After that, it
becomes a square-like pattern with four round corners (61.3), and then, had four hollows
(61.6), finally becomes a pattern consisting of four lobes (100).

The two computer simulations with the reduction of the circular area and the
elongation of thecircular perimeter length both resulted in the pattern with four lobes (Figs.
7aand 7b). Our vertex dynamics does not involve random numbers and is deterministic.
Results from the vertex dynamics depended only on their initial conditions. The initial
conditions for the simulation of Figs. 7a and 7b were circles, strictly speaking regular
polygons with 40 corners, which were made using real numbers of double precision on
Descartes rectangular x- and y-coordinates. The four-lobe patterns of Figs. 7aand 7b and
the rectangular coordinates both have the same symmetry of 4-fold rotation. The patterns
with four lobes are considered to be influenced by amplification of insignificant unbalance
among numerals in the rectangular coordinates.

For confirmation of the thought, we performed computer simulations with an initial
condition made by random numbers. We put 60 pointsat random along acircular curveand
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Fig. 8. Shape change simulation from a circle approximated by a segment chain of random length. The initial
condition of acirclewasmade asfollows. Vertices (N = 60) were distributed on acircular ring of perimeter
length 1 by using uniform random number (radian) between 0 and 27z The simulation was performed under
the constrains that the perimeter length is consistently maintained constant and the area is reduced as the
manner described in Fig. 6a (similar to Fig. 7a, except that S, = 0.03 and t, = 0.54). Numerals are time (t)
of the computer simulation. Ly=1. h=5x 1075

made an irregular polygon with 60 corners, which was used for the initial pattern in the
computer simulation of reducing the circle area of Fig. 7a. We obtained various results,
depending on series of random numbers, that is, circular patterns became the final pattern
with two lobes viafour lobe-like or three |obe-like patterns. One of the resultsis shown in
Fig. 8. These results confirmed the thought that the procession of numerals of rectangular
coordinates results in the four-lobe patternsin Figs. 7aand 7b.
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Fig. 9. Shape change simulations from circles with artificial perturbations. For initiation of the shape change,
artificial perturbations as described in Fig. 2 were given. The areawas reduced in a similar manner to Fig.
7aunder the constrain on constant perimeter length. Number of the artificial perturbationswasone (a), three
(b) and four (c). Arrow heads denote positions of the artificial perturbation. The positions were defined in
the rotational symmetry. Numerals aretime (t) of the computer simulation. h = 1 x 10*. The areais reduced
as described in Fig. 6a. S,y = 0.034, t, = 102.1, N = 40 for a. §,, = 0.03, t, = 10.9, N = 60 for b and c.
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Using the fact that the insignificant unbalances in the initial pattern makes the
initiation of pattern change, we can promote prompt change of the shape by making
artificial unbalance of vertex coordinates. We made an artificial initiation as follows.

3.4. Shape change of a circle with artificial perturbations

When the simulation was performed with theinitial condition of thecircle, it washard
for the circle to find a clue to break the circular symmetry (Figs. 7a and 7b). Here we
introduce artificial perturbations for the initiation of shape change as shown in Fig. 2.
Conditions of simulations were similar to that of Fig. 7a (the enclosed area, §, decreased
as shown in Fig. 6a). Results of the simulation with one, three, four and five artificial
perturbations were shown in Figs. 9a— and 10.

When we added a single perturbation as shownin Fig. 9a (arrow head), the circlewas
elongated (t = 27.6), made two hollows (66.5) and became the two-lobe pattern (150). The
position of the initial perturbation corresponds to one of the hollows.

When we add three perturbations in 3-fold rotational symmetry as shown in Fig. 9b
(arrow heads), the circle became atriangle with round corners (6.8). Thethree edges of the
triangle became concave (7.1), and finally the three-lobe pattern. Thethree positions of the
initial perturbation correspond to the three hollows, respectively.

When we add four perturbations in 4-fold rotational symmetry as shown in Fig. 9¢c
(arrow heads), the circle became a square with round corners (8.0). The four edges of the
square became concave (8.3), and finally the four-lobe pattern. Similar to Figs. 9aand 9b,
the four positions of the initial perturbation correspond to the four hollows, respectively.

When we add five perturbationsin 5-fold rotational symmetry asshowninFig. 10, the
circle became a pentagon with round corners (t = 0.5). The five edges of the pentagon
became concave (1.0), and then a five-lobe pattern (4.0). After that, it began to be
deformed, through a pattern like four-lobe (7.0) and a three-lobe pattern (11), and finally
the two-lobe pattern (150).

The above-mentioned simulations of Figs. 9 and 10 seem to show the three, four and
five perturbations produce thethree-, four-, and five-lobe patterns, respectively. However,
five perturbations once produced the five-lobe pattern (t = 4in Fig. 10), then it began to be
deformed, through four-lobe (t = 7) and three-lobe patterns (11), finally, became the two-
lobe pattern (150). Change of the potential U from the five-lobe pattern to the two-lobe
pattern is shown in Fig. 11. The behavior of five-lobe pattern aroused a question whether
or not, for example, we have astabl e three-lobe pattern. We examined the val ue of potential
U in detail. When we continued the simulation of the three-lobe pattern of Fig. 9b by the
vertex dynamics, thevaluesof U, Ug, U, and U, increased and decreased considerably, but
the U value (the summation of U, Ug, U, and Up) almost kept at a constant. A numeral at
15th place of decimals of the U value sometimes increased by one and decreased by one
around t = 20 (2 x 10° steps). Although the U value should not increase mathematically
(du/dt < 0, NAGAI and HONDA, 2001), the U value increased by one at 15th place of
decimals. The fact shows that 15th place of decimalsis out of bounds of the computation
accuracy. When we continued the simul ation furthermore, the U value did not increase, but
decreased monotonically around t = 100. That is, the pattern went towards the two-lobe
pattern. Thethree-lobe pattern of Fig. 9b had been searching for away to reduceitsU value
on the bounds of computation accuracy.
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Fig. 10. A shape change simulation from acircle with five artificial perturbations. A computer simulation of
the shape change from acircle was performed with five artificial perturbations. The condition wasthe same
as Fig. 9, except that Sy, = 0.03 and t; = 0.10.
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Fig. 11. Change of the potential U in the simulation from a circle with five artificial perturbations of Fig. 10.
Abscissa, simulation time (t). Potential levelsof the circle and the circlewith five perturbations are 0.00651
and 0.0737, respectively. The potential level of the circle with five perturbations increases due to the
reduction of the enclosed area until t, = 0.10 as shown in Fig. 6a. Potential levels of five-lobe (0.149), four-
lobe (0.0959 in Fig. 7a), three-lobe (0.0535 in Fig. 9b), and two-lobe (0.0225 in Figs. 5a, 5b and 9a) are
presented by broken lines.

The unstable three-lobe pattern is considered to be caused by insignificant unbalance
in the process of shape change. Thus, we refined the three-lobe pattern with 3-fold
rotational symmetry as completely as possible (Fig. 12). A simulation by the vertex
dynamicswas performed using the refined three-lobe pattern asaninitial condition. When
we continued the simulation until t = 50, we found that the values of U, U, Ug, U, and U,
all do not change even at 15th place of decimalsfromt = 2to 50 (almost 5 x 10° steps), that
is, the pattern does not change any more by digital computation. We have a stable three-
lobe pattern of closed curve in addition to the stable two-lobe pattern under the condition
of computation accuracy with 15 places of decimals.

3.5. Shape change from the three-lobe pattern to the two-lobe pattern

The artificial perturbation can initiate shape change of the stable three-lobe pattern
that had be made by refinement asdescribed in Fig. 12. Wewereinterested in intermediate
shapes from the three-lobe pattern to the two-lobe pattern. A path to the two-lobe pattern
isunique or varies? If it is not unique, how much does it vary? Since the vertex dynamics
basically provides deterministic processes, it is appropriate to investigate variation of the
path by the vertex dynamics.

Wemadetheartificial perturbationsat varioussites of the three-lobe pattern as shown
in Figs. 13a—e (arrow heads). The artificial perturbations were given at several sites from
the bottom of ahollow between two lobes (Fig. 13a) to thetop of alobe (Fig. 13e). Results
of the computer simulations are shown with time (t) in Figs. 13a—e.

When the perturbation was given at the bottom of a hollow between two lobes (Fig.
13a), the hollow having received the perturbation became shallow (t = 24). The two lobes
fusedintoafat lobe (30). Finally thetwo-lobe pattern appeared (100). The perturbation site
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Fig. 12. Refinement of athree-lobe pattern with 3-fold rotational symmetry. The three-lobe pattern obtained by
the simulation of Fig. 9b was divided into six parts, which are three “S” shaped (S) and three reflected “ S”
shaped (S). The S patterns were reflected into their mirror image, and all six parts were rotated to be
superposed into one “S” shape. Then, the averaged “S” shape was calculated. The six averaged “S” shape
were inversely treated with operations of mirror and rotation to be reconstructed into a refined three-lobe
pattern.

was going to be shifted towards the top of lobe. Figure 13b shows the two lobes far from
the perturbation site fused with each other (t = 30 to 45). The fusion is not symmetric
between the two lobes, but the lobe further from the perturbation site became dominant.
Finally the two-lobe pattern was formed (200). Figure 13c shows, in contrast to Fig. 13b,
the lobe far from the perturbation siteretired (24 to 30). Next, Fig. 13d showsthe lobe far
from the perturbation site fused with the lobe received the perturbation (24). When the
perturbation was given at the top of alobe (Fig. 13€), the lobe receiving the perturbation
itself retired.

On the basis of observations of these various changes from the three-lobe pattern to
the two-lobe pattern, we can divide them into two groups, fusion of two lobes into one as
shown typically in Fig. 13a, and retraction of alobe to the main body as shown typically
inFig. 13e. Wewill call them fusion type and retraction type, respectively. Thefusiontype
showed a characteristic propertiesthat the connection between the fused large lobe and the
third lobe became extremely narrow after fusion (e.g. indicated by Oin Fig. 13a), whilethe
retraction type did not (see Fig. 13e). The shape changesin Figs. 13b—d were intermediate
types between fusion and retraction. However, when we pay attention to a connection
between the lobe by fusion and the third lobe, the connections of Fig. 13b (t = 45) and d (t
= 30) are narrow (indicated by [) and the connection of Fig. 13c (t = 30) is not narrow
(indicated by ). Thus, we can say that Figs. 13b and d rather belongsto the fusion type and
Fig. 13c to the retraction type. It is concluded that the shape change from the three-lobe
pattern to the two-lobe pattern contains the fusion types and the retraction type.
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Fig. 13. Shape Change simulations from the three-lobe pattern to the two-lobe pattern. The initial pattern was
the refined three-1obe pattern made from the pattern of Fig. 9b (t = 20) by the method of Fig. 12. Positions
of the artificial perturbation were shifted from a concaved part between lobes to a protruded part (a—€).
Arrow heads denote positions of the artificial perturbation. Open arrows denote positions of fusion or
retraction. O denotes narrow parts after fusion. Numerals are time (t) of the computer simulation. Vertex
number (N) is60. Ly =1, S,=0.03, and h =1 x 10,

When a pattern changes from the three-lobe one to the two-lobe one, the potential U
decreasesfrom 0.0535 to 0.0225. The potential U consisted of U, Ug, U, and Uy as shown
in Eq. (2). The decrease of U was mainly caused by the decreases of the deviation of the
perimeter length U, (=(L —L)?) and thetotal bending energy U, since the decreases of Ug
and U, were small (5 x 10~ and 1.6 x 107, respectively). The potential U was three-
dimensionally presented asafunction of L and Uy asshown in Fig. 14a. The shape changes
of the fusion type (Fig. 13a) and the retraction type (Fig. 13e) were presented by thick and
thinlines, respectively. The potential U wasalso presented asafunction of L (Fig. 14b) and
afunction of Uy (Fig. 14d), respectively. Figure 14c shows the correlation between L and
Uy, during the decrease of U. In the shape changes of the fusion and retraction types both,
L decreased further deviating from 1 once, and returned to 1 according as becoming the
two-lobe pattern. However, temporal deviation of L from 1 of theretraction type (thinline)
was larger than that of the fusion type (thick line). For decrease of U, L should be close to
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Fig. 14. Paths of shape change from the three-lobe pattern to the two-lobe pattern. a) Potential U is three-
dimensionally presented as a function of the perimeter length L and bending energy Up. b) Projection of a
on L-U plane. c) Projection of aon L-Up, plane. d) Projection of aon Up-U plane. Thick line represents the
shape change of the fusion type of Fig. 13a. Thin line represents the shape change of the retraction type of
Fig. 13e.

1. The reason why L deviated from 1 is because, on those steps, the decrease of U, was
dominant for the decrease of U in comparison with the decrease of (L —L,)2. Indeed, degree
of the decrease of U, of theretraction type (thin line) waslarger than that of the fusion type
(thick line) as U decreased (Fig. 14d).

In conclusion, to decrease U inthe shape changefrom thethree-lobe patternto thetwo-
lobe pattern, the retraction type (thinline) reduced the bending energy allowing temporally
increase of deviation of L from 1. In contrast, the fusion type (thick line) reduced the
bending energy moderately keeping L as closeto 1 as possible.

3.6. Shape change from the four-lobe pattern to the two-lobe pattern by way of the three-
lobe pattern
We proceeded the pattern change from the three-lobe pattern to the two-lobe pattern
by givingtheartificial perturbations. Similarly we madetheartificial perturbationsat afew
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Fig. 15. Simulations of shape changes from the four-lobe pattern to the two-lobe pattern. a) One perturbation
was given at the bottom of a hollow (a concave part between lobes). b) Two perturbations were given at the
top of alobe. ¢) One perturbation wasgiven at thetop of alobe. Arrow headsdenote positions of theartificial
perturbation. Open arrow denotes position of fusion or retraction. Numerals are time (t) of the computer
simulation. Vertex number (N) is 60. Lo =1, §, = 0.03, and h = 4 x 107,
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sites of afour-lobe pattern. We observed the pattern change from the four-lobe pattern to
the two-lobe pattern via the three-1obe pattern.

Figure 15a shows the result obtained by the simulation with a four-lobe pattern that
had an artificial perturbation at the bottom of a hollow between two |obes. The two lobes
forming the perturbed hollow began to fuse with each other (t = 3.2). Then, the pattern
became three-lobe (7.2). The fusion occurred furthermore (12.5), finally the two-lobe
pattern was made (40). Figure 15b shows the result of the simulation with the four-lobe
patternthat had two artificial perturbationsat thetop of alobe. Onelobewhich had received
the perturbations in the four-lobe pattern retracted (3.4), then a three-lobe pattern was
formed (12.5). After that, another retraction occurred (19.5), finally the two-lobe pattern
wasformed (150). Figure 15c shows the result of the simulation with the four-lobe pattern
that had an artificial perturbation at the top of alobe. Like the process of Fig. 15a, afusion
of two lobes was observed, but the fused two |obes were differed from those of Fig. 15a.
Thelobe received the perturbation fused with one of the neighboring lobes (3.8). Then, the
pattern became three-lobe (12.4). After that, an asymmetric fusion took place (23.9).
Finally the two-lobe pattern was formed (150).

The fusion and retraction types of shape change were observed not only in the shape
change from the three-1obe pattern to the two-lobe pattern, but also in more general shape
changes. Shape changes of the closed curves did not show multifarious types, but
surprisingly a few, the fusion, retraction and their intermediate types. Furthermore, it
should be noted that subtle differences of initial patterns determined the type of shape
change.

4. Conclusion

When a shape with one of good symmetries transforms into one with another good
symmetry, the degree of symmetry temporally decreases. Generally it is known that the
path between the two good symmetries is not unique. What type of shape change it
demonstrates and how many paths it has are exciting questions, but these have not been
investigated intensively. In the present paper, with the aid of the method of the vertex
dynamics that describes a deterministic evolution process, the shape change of the closed
curve was investigated under the specified perimeter and area constraints.

It was elucidated that there are not many paths towards the optimal shape, but that the
number of path types was extremely limited. For the closed curve in a plane evolving
towards a state of the minimum bending energy under the conditions of keeping the
peripheral length and the enclosed area constant, the shape change of the curve mainly
consists of lobe-fusion and |obe-retraction.
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