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Abstract.  The genetic code in biology describes how genes that are composed of DNA are
translated into proteins composed of amino acids. There are twelve known genetic codes,
the standard code used by most organisms, and alternate codes used by mitochondria and
some lower organisms. These genetic codes can be represented as graphs, with vertices
labeled by the amino acids and lines representing complementary DNA bases arranged as
three-letter codons paired with reverse-complement codons. The resultant genetic graphs
present forms that suggest an underlying mathematical symmetry that has been shaped by
evolutionary forces. The forms of the graphs are discussed relating mathematics and
biology.

1.  Introduction

The flow of genetic information in biology is from DNA to a large number of mRNAs
via a process called transcription, then from the mRNA molecules to proteins in a process
called translation. The DNA and RNA are composed of long strings of nucleotide bases,
represented as labels with the letters A, C, G, and T (except U for RNA sequences). The
genetic code specifies how three DNA bases, as a group called a codon, are translated into
an amino acid in a polypeptide or protein. In the standard genetic code, from one to six
codons can specify any particular amino acid. The average codon degeneracy for all of the
amino acids is three codons. Thus for a small mRNA coding for 100 amino acids, there are
about 3100 or 5 × 1047 different combinations of bases using synonymous codons that code
for the same polypeptide. The actual number of combinations would depend upon the
frequency of occurrence of the amino acids in the protein, which varies with the organism
considered (NAKAMURA et al., 1997).

There are a total of twelve different genetic codes, the standard and eleven alternate
codes (JUKES and OSAWA, 1993). The standard code is utilized in bacteria and in most
higher organisms where the cellular nucleus contains the chromosomes of DNA. Sub-
cellular organelles called mitochondria contain a much smaller amount of DNA than the
nucleus, and implements one of the several alternate genetic codes. All of the genetic codes
translate into exactly the same set of twenty amino acids. Differences in the genetic codes
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occur by different assignments for the codons into one of the amino acids, or a termination
codon, or as being unused.

The underlying structure of the genetic code has been suggested to influence mRNA
sequences through evolutionary selection of RNA secondary structures (SEFFENS and
DIGBY, 1999). That study found that mRNA sequences are thermodynamically more stable
than expected for secondary structure folding. Calculated folding free energies are 80%
more likely to be more negative than expected compared to mononucleotide shuffled
sequences. Randomization while preserving dinucleotide compositions instead yields
control sets of nearly the same free energy (WORKMAN and KROGH, 1999). That work
demonstrates that preserving dinucleotide composition biases will increase the magnitude
of folding free energies in shuffled sequences. Single mutational events that preserve
dinucleotide frequency though are extremely rare.

For 79 mRNA sequences selected from a yeast SAGE library, the free energy
minimization calculations of native mRNA sequences are also usually more negative than
randomized mRNA sequences (SEFFENS et al., 2002). If this yeast SAGE data is grouped
according to expression levels, the mean folding free energy bias is different between the
high, average, and low expression-level genes. A t-Test for paired two-samples of means
showed a significant difference in folding free energies between high and low expression
yeast genes (SEFFENS et al., 2002). Thus the sequence of these yeast genes typically give
rise to more stable secondary mRNA structures in high expression genes than in single-
copy genes.

Genes could then be classified according to whether they are more or less stable in
calculated folding free energy compared to mononucleotide-randomized sequences
(SEFFENS, 1999). The excess RNA secondary structures may be involved in gene regulation
mechanisms, intron splicing, or steady state mRNA levels. Structural elements of mRNA
are known to play integral roles in mechanisms regulating translation and mRNA stability,
which in turn directly affect translation efficiency and turnover rate of message, and
therefore the amount of a specific protein that is synthesized. The regulation of mRNA
turnover is an essential step in controlling message abundance and therefore gene expression
in cells. Message degradation or stability plays a critical role in cell proliferation or cellular
differentiation, and is crucial in mechanisms that maintain normal biological functions of
individual cells and tissues. Aberrant mRNA turnover usually leads to altered levels of
proteins, which can dramatically modify cellular properties. For example, oncogene or
growth factor over-expression is often associated with abnormal cell proliferation and
malignant transformation. Since message turnover is an important component of gene
regulation, it is not surprising to find that message stability characteristics of key growth
regulatory genes are tightly controlled.

Interestingly, an in silico study of mRNA secondary structure has found a bias within
the coding sequences of genes that favors “in-frame” pairing of nucleotides (SEFFENS and
DIGBY, 2000). This pairing of codons in mRNA, each hydrogen bonded with its reverse-
complement, can be performed as a theoretical exercise on the 64 codons in the genetic
code. This graph-drawing exercise partitions the 20 amino acids into three subsets as
represented by a three-component graph. The composition of proteins in terms of amino
acid membership in the three subgroups has been measured, and runs of members within
the same subgroup have been analyzed. One can identify proteins having very long runs,
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or count the number of runs in each protein. The latter category includes a runs-test statistic
applied to the number of runs, relative to the number of runs to be expected from a random
arrangement of the same elements (WALLIS and ROBERTS, 1956). As compared to randomized
versions of the same protein sequences, the distribution of the runs-test statistic over the
native protein sequences is negatively skewed (DIGBY et al., 2002). To assess whether this
statistical bias was due to a chance grouping of the amino acids in the real genetic code,
several alternate groupings were examined by permuting the assignment of amino acids to
groups. A metric was constructed to define the difference, or “distance”, between any two
such groupings, and an exhaustive search was conducted among alternate groupings
maximally distant from the real genetic code, to select sets that were also maximally distant
from one another. To determine if this difference between native and randomized protein
sequences is unique to the partition based on the genetic graph, other sets of amino acids
were examined. Interestingly the calculated skewness for the alternate partition (skewness
= –0.210) is less than for the real genetic code partition (skewness = –0.376) from DIGBY

et al. (2002).
This genetic graph then is constructed by pairing codons with their reverse complement

for all 20 amino acids. The codons, in turn, are grouped together according to the respective
amino acids for which they code. Lines with the amino acids as vertices on a graph then
represent reverse complement relationships. This genetic graph suggest a mathematical
symmetry is present which may aid in understanding the evolution of the genetic code and
codon usage. This work examines the graph theoretical form of the standard and alternate
genetic codes to establish a framework for further work. The graphical nature of the
standard genetic code was first noted by an argument considering anti-proteins to explain
receptor-ligand modeling in biochemistry (ZULL and SMITH, 1990).

2.  Materials and Methods

Analysis of genetic codes utilized standard graph theory methodology (HARARY,
1972). Calculations were performed using Mathematica (Wolfram Research Inc.,
Champaign, Il) and the discrete mathematics package “Combinatorica” by SKIENA (1990).
The notebooks used to generate the genetic graphs and their graph theory analysis are
available from the author. The genetic codes were obtained from a list complied by A.
Elzanowski and J. Ostell at the National Center for Biotechnology Information (http://
www3.ncbi.nlm.gov/taxonomy). This list is based primarily on the reviews by OSAWA et
al. (1992) and JUKES and OSAWA (1993). The genetic codes are identified by an ID number
for use in GenBank and the DNA Data Bank of Japan database annotation (TATENO and
GOJOBORI, 1997). The standard genetic code (ID = 1) is utilized in most organisms for
translating the information contained in the chromosome(s). The other codes are: vertebrate
mitochondrial (ID = 2), yeast mitochondrial (ID = 3), protozoan mitochondrial (ID = 4),
invertebrate mitochondrial (ID = 5), ciliate nuclear (ID = 6), echinoderm mitochondrial (ID
= 9), euplotid nuclear (ID = 10), bacterial (ID = 11), alternate yeast nuclear (ID = 12),
ascidian mitochondrial (ID = 13), flatworm mitochondrial (ID = 14), and blepharisma
nuclear (ID = 15).

The graph representation of the genetic code uses vertices for the twenty amino acids,
and lines to represent codon-reverse complement codon pairs. Stop codons are not
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represented since they do not form a group in the same sense as the amino acids. Hence the
reverse complement of the stop codons are not represented in the graphs. This will cause
some vertices to have a lower degree or valence than expected by the known number of
codons (degeneracy) for each amino acid. This allows a fixed set comparison with the
alternate genetic codes where the number of stop codons varies and even some codons are
unused (OSAWA et al., 1992; JUKES and OSAWA, 1993). Since ignoring stop codons is
equivalent to contracting the genetic graph, non-trivial graph theory properties of the
resulting graphs will not change.

Fig. 1.  Nuclear genetic codes with three components. Multilines are shown with numbers.
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3.  Results and Discussion

A graph-drawing exercise can be performed by listing the codons of each amino acid
in the genetic code, then drawing a line to link codon: reverse-complement codons together.
This exercise results in three independent graph components or families, each comprising
a subset of the twenty amino acids (Fig. 1). The three amino acid families can be identified
by the member with the greatest degeneracy or graph vertex degree. The largest amino acid
family, Serine, contains a C or G at the second codon position, while the Valine and Leucine
families contain A or T at this second codon position. This decomposition of the twenty
amino acids into three families is a structural feature of the genetic code. If Arginine, Serine
and Leucine are excluded for the moment, the degeneracy in the genetic code can be
expressed as N1N2X, where X = {N = (A,C,G,T), or Y = (C,T), or R = (A,G), or H =
(A,C,T)}. For Arginine and Leucine, the N2 position is also fixed, and N1 is one of two
different bases. For Serine, the choice for N2 is the complement of the other (C or G). Since
the second codon position is constant (except for Serine) among all synonymous codons,
the twenty amino acids (including Serine due to N2 = {C or G}) must group into at least two
families based on the pairing of reverse complement codons. One family contains N2 = C
and G, and the other family contains N2 = A and T. It is interesting that the N2 = A and T
family has decomposed further into two smaller graphs as shown in Fig. 1 for three nuclear
genetic codes.

The stop codons, if treated as a coherent group like those coding for amino acids,
would still not generate a completely connected graph. Only two components, the Serine
and Leucine Family would be connected in this case. The functional significance of stop
codons may not require that they be treated as an equivalence group in the same sense as
the rest of the genetic code. In fact, they are the least preserved features among the several
code variations (OSAWA et al., 1992).

Fig. 2.  Nuclear genetic codes that have only 2 connected components. Multilines are shown with numbers.
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There are a total of twelve known genetic codes, each identified by an ID number for
use in database annotation. The standard genetic code (ID = 1) is utilized in most organisms
for translating the information contained in the chromosome(s). The alternate codes are
identified with their ID numbers in Sec. 2 (Materials and Methods). The modified genetic
codes yield similar multi-component graphs (Figs. 1–4). Note that the Yeast mitochondrial
code in Fig. 4 contains a line that appears to include four vertices, but only Arg and Gln are
actually incident due to the graphing routine in Mathematica. All of the genetic codes have
either two or three components (Table 1). These are identified as “gc(x)Fam(y)”, where (x)
is the genetic code ID number and (y) is a component label composed of S, V, or L. All of
the genetic code components appear to be built from the three amino acid families in the

Fig. 3.  Mitochondrial genetic codes with three components. Multilines are shown with numbers, and
pseudographs with a small loop.
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standard code. These are the Serine Family (gc1FamS), the Valine Family (gc1FamV), and
the Leucine Family (gc1FamL). There are five instances where the genetic code forms only
two components, the Leucine Family is either joined to the Serine Family (three instances
identified as gc(x)FamSL) or to the Valine Family (two instances identified as gc(x)FamVL).
These instances are shown in Fig. 2 for the nuclear codes, and Fig. 4 for the mitochondrial
codes. If there were a genetic code with Serine joined to Valine family, the distribution of
vertices between the two resulting components would the most uneven of the three possible
permutations. This may indicate a biological selective pressure for the components to be
of near equal size.

Fig. 4.  Mitochondrial genetic codes that have only 2 connected components. Multilines are shown with a
number.
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Genetic code ID Components Multi Pseudo Planar Notes

Standard 1 gc1FamS T F F
gc1FamV F F T
gc1FamL T F T

Vertebr. mit. 2 gc2FamS F F F
gc2FamV F F T
gc1FamL unmodified

Yeast mit. 3 gc3FamSL T F T Ser and Leu joined
gc2FamV same as code 2

Prot. mit. 4 gc4FamS T F F
gc1FamV unmodified
gc1FamL unmodified

Invertebr. mit. 5 gc5FamS T T F pseudograph
gc2FamV same as code 2
gc1FamL unmodified

Ciliate nuc. 6 gc1FamS unmodified
gc1FamV unmodified
gc6FamL T F T

Echino. mit. 9 gc5FamS same as code 5
gc9FamVL T F T Val and Leu joined

Euplotid nuc. 10 gc10FamS T F F
gc1FamV unmodified
gc1FamL unmodified

Alt. Yeast nuc. 12 gc12FamSL T F F Ser and Leu joined
gc1FamV unmodified

Ascidian mit. 13 gc13FamS T F F
gc2FamV same as code 2
gc1FamL unmodified

Flatworm mit. 14 gc5FamS same as code 5
gc14FamVL T F T Val and Leu joined

Bleph. nuc. 15 gc15FamSL T F F Ser and Leu joined
gc1FamV unmodified

Table 1.  Component composition of genetic code graphs.

Notes: Unmodified refers to Universal genetic code. Abbreviations: Vertebr., Vertebrate; Mit.,
mitochondrial; Prot., protozoan; Invertebr., invertebrate; nuc., nuclear; Echino., echinoderm; Alt., alternate;
Bleph., blepharisma. Multi (multi-graph); and Pseudo (pseudo-graph).
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Except for the vertebrate mitochondrial code (ID = 2), all of the examined genetic
codes have the Serine and Leucine families configured as multigraphs in the terminology
of graph theory (Table 1). A multigraph possesses vertices for which multiple lines connect
the same two vertices (HARARY, 1972). The vertebrate mitochondrial graph has only the
Leucine family configured as a multigraph. Since the set of amino acids does not change
for any of the genetic codes, the number of vertices for the components remains constant,
except for the joined components. The number of lines for each component will change
depending on the addition or loss of stop codons. The six different Serine components are
all non-planar graphs, while the four different Valine and Leucine components are planar.
A planar graph can be drawn without any lines crossing. The three Serine joined components
retain the non-planarity of the basic Serine Family, and the Valine joined components are
still planar.

Few graph theoretical properties are invariant for the genetic codes and their components
that could be used to differentiate possible genetic codes from random graphs of the same
number of vertices and lines. The genetic graphs are not simple since several components
are multigraphs, as mentioned earlier. Even one component, gc5FamS, is a pseudograph
with a line incident to the same vertex. This would be represented as a loop on that vertex.
The genetic graphs all possess cycles, several components are Hamiltonian and some are
also Eulerian. A Hamiltonian graph has a cycle or path that visits each vertex exactly once,

Fig. 5.  Relabeled vetices for standard genetic code to show symmetry. Multilines are shown with numbers and
pseudographs with a loop.
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while an Eulerian graph has a path that includes each line exactly once. Some of the Serine
components are biconnected, meaning that the graph has no articulation vertices, that is,
vertices whose removal will disconnect the graph.

An interesting graph theory property that has a biological interpretation is that all of
the graphs are either bipartite or nearly bipartite. A graph is bipartite if the vertices can be
partitioned into two disjoint sets such that there exists no edge between vertices of different
sets. An alternate definition is that a graph is bipartite if and only if all cycles are of even
length. This graph property is related to the genetic code having complement pairs, A with
T, and C with G, in the fundamental composition of DNA and, with minor modification,
in RNA. The smaller Valine and Leucine components are bipartite, while the Serine
components have added lines that make them non-bipartite.

The decomposition of the twenty amino acids into the three independent families has
unique properties that are related to symmetry breaking in graphs. Each of the three
families includes charged, polar, and non-polar members (ZULL and SMITH, 1990). This
property suggests that it is possible to find proteins comprised of amino acids from only a
single family. A preliminary survey has identified proteins that are over 90% from the
Serine family (data not shown). Graph symmetry of the genetic codes becomes evident
upon a relabeling of the vertices. The construction of the genetic graphs in Figs. 1–4
involves the grouping of codons into sets that are represented by vertices. Each vertex
contains codons that code for a unique amino acid. The amino acids can then be groups into
biochemical functional sets that again can be represented by vertices. This process then
involves a contraction of the vertices of the genetic graphs. If three biochemical groups are
used, a three-vertex graph will result. As an example, the three biochemical groups could
be polar (Ser, Gly, Thr, Cys, Asn, Tyr, Gln), nonpolar (Ala, Pro, Trp, Val, Ile, Met, Leu,
Phe), and charged (Arg, Asp, His, Glu, Lys). The resulting graph contraction of the
standard genetic code is shown in Fig. 5. The three graph components are multi- and
pseudo-graphs that possess considerable symmetry. Therefore as the identity of the amino
acids that are coded by the codons becomes revealed, the symmetry in the genetic codes is
broken.

The graph theory properties of the genetic graphs may be useful to correlate with
biological parameters to uncover new relationships. Graph theory properties that differentiate
the vertices (amino acids) into subsets, such as those vertices that form bridges, may be
useful to classify protein sequences. There may be protein features or properties (KARLIN

and BUCHER, 1992) for which correlation to graph theory properties may have a useful
biological interpretation. Biological properties such as the propensity of amino acids to
appear between protein domains (SEFFENS, 1994), amino acid frequency of use, sets of
amino acids at certain positions in a gene (such as signal sequences or intron/exon
boundaries), could exhibit correlation to graph theoretic sets.

This graph theory treatment may help to uncover the origins of the genetic code and
some of its properties. Since the unraveling of the genetic code a large number of proposals
have attempted to explain its origin and evolution (CRICK, 1968). The problem of codon-
to-amino-acid assignment has been viewed in terms of chemical interactions (WOESE,
1973), whereas CRICK (1968) postulated that the code was the result of a frozen accident
at an evolutionary stage from which any change in the code was prohibited for an ecosystem
of protoorganisms. Even with the discovery of the alternate genetic codes in mitochondria
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and some organisms (OSAWA and JUKES, 1988), the frozen accident hypothesis appears
reasonable. The discovery of catalytic RNA (CECH, 1990) leads to the inference of a
protobiotc RNA world and adds to the possible codon assignment mechanism. Such an
RNA-determined scenario suggests that, in the transition to a protein-assisted replication,
many codes could have coexisted, resulting in selective competition (DIGBY and SEFFENS,
1999).

This graph theory treatment of the genetic codes is meant to define the code in
mathematical terms, and to outline a means of uncovering biological relationships in DNA
or protein sequences. If the genetic codes can be sufficiently defined or characterized, one
could study all possible genetic codes to determine if the current ones are a frozen accident
or if they are optimal in some thermodynamic parameter. It is hoped that this communication
will stimulate a discussion between mathematicians and molecular biologists for this end.

4.  Conclusion

When codons are graphically paired to their reverse complement codons, the twenty
amino acids group into three independent families. All of the alternative genetic codes
preserve sets of disjoint subgraphs. Data on mRNA folding has supported the biological
relevance of the graph representation of the genetic code. A most important support being
an in silico study of mRNA secondary structure that found a bias within the coding
sequences of genes that favor in-frame pairing of the nucleotides (SEFFENS and DIGBY,
2000). The pairing of codons with their reverse complement in mRNA stem-loop structures
can be performed as a graph drawing exercise on all codons in the genetic code. This graph
drawing exercise generates a three-component graph, thus partitioning the amino acids into
three groups. Eight amino acids are in one group, while seven and five are in two smaller
groups. A search of 430,000 proteins found sequences with statistically long and short runs
of amino acids in one of the graph theory groups (DIGBY et al., 2002). The mRNA
sequences corresponding to these unusual proteins were in silico folded and compared to
randomized sequences to calculate a folding bias score. Proteins with long runs of amino
acids from one group were coded by mRNAs that had large negative scores. These mRNAs
thus possessed greater potential for forming secondary structures than expected by chance.
Proteins with short runs of amino acids from one group were coded by mRNAs that had
small positive folding scores. This supports the biological relevance for the graph theory
partition of the genetic code and the three groups of amino acids. This suggests a graph
symmetry that may aid in understanding the evolution of the genetic code and codon usage.
This work presents a tool, graph theory, to ask new questions concerning the genetic code.
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