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Abstract.  Some problems related to signal generation at electrically charged membranes
of neuron as seen from the view of fundamental physics are discussed. After a short
introduction to processes taking place at the synapse, the time reversibility of classical
mechanics and quantum mechanics are explained. Some basic ideas for deriving
irreversibility from reversible mechanics are introduced, and some typical irreversible
processes are illustrated by the use of the master equation. Finally, some speculations are
given as to how phenomena in neural systems should be understood based on basic
physics.

1.  Introduction

This paper is aimed at forming explanations and making speculations on fundamental
problems in quantum mechanical and statistical descriptions behind the generation and
transmission of signals in neurons. The author is a physicist and not a specialist of
biophysics. So, the content of this paper is confined to some basic aspects and ideas, which
are expected to be useful for beginners in this field.

In this section a short illustration of phenomena in the generation of neural signals is
given. In the following sections some introductory explanations of time reversibility of
classical mechanics and quantum mechanics are given, and it will be discussed how
irreversibility emerges in many body problems, such as neural signal propagation. Next,
mechanisms of sustaining inequilibrium states in open systems are discussed. Since basic
properties of open systems are not understood sufficiently, this discussion is partly based
on speculations of this author.

Electric signals in neurons are generated and sustained owing to inhomogeneous
distribution of ions, Na+, K+, Cl–, and an equilibrium electric potential of about –70 mV
inside the neural membrane. To be more precise, the equilibrium potential E depends on the
ions, because it is related to the ratio of the densities of an ion outside and inside of the
membrane by Nernst’s formula
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where R is the gas constant, T is the absolute temperature, F is denotes Faraday’s constant
and K0, Ki are the outside and inside concentrations of ions, respectively.

This inequilibrium state is maintained by differences of permeabilities of ions and by
an ion pump, which consumes energy supplied from outside (see Fig. 1). In a quiet state
without signal transmission the ratio of permeabilities of these ions, say pK, pNa and pCl, for
the squid axon is approximately 1:0.03:0.1, so that Na+ ions with weaker permeability can
stay within high potential energy. Since the ion pump is always working the phenomena
occurring in neurons are those in so called “open system”. Note that the term “equilibrium
potential” does not necessarily imply a concept of thermal equilibrium, but simply a
stationary value of electric potential under the operation of the ion pump.

The mechanism of signal generation in a neural cell is rather complicated. An
important stage is the process taking place at the synapse, a part of a neural cell connected
with another neural cell. At this connection the two cells are not directly in contact. The
synapse button, a tip of the axon, is located close to another cell but separated by a space
of about 10 nm, called a synaptic cleft (see Fig. 2). Molecules, such as acetylcholine or
glutamic acid, to mention just two, are extruded from synaptic vesicles entering the
synaptic cleft and subsequently bind to receptors at the post-synaptic site. The molecules
acting on these receptors located within the post-synaptic membrane lead to the opening of
ion channels changing the permeability to Na+ and K+ ion flux. The resulting change in
membrane potential finally reaches particular membrane locations at the soma of the cell
which in turn may trigger a pulse signal, the action potential, that propagates along the
postsynaptic axon towards the next synaptic button. The beginning of these processes is
marked by an interaction of molecules with receptors, which, if sufficiently resolved, is a
quantum chemical process. After the ion channels open or closed state is changed by this
interaction, a strong change of ion-permeation creates an electric reponse. Later stages of
this process gradually give rise to a macroscopic current, which is described by classical
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Fig. 1.  Stationary state of a neutral cell with respect to the ion distribution and the electric potential.
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electrodynamics and thermodynamics. This process is looked upon as an unstable
phenomenon with a growing electric current.

It is interesting to remark that a similar phenomenon is seen in the production of a pulse
current in the Geiger-Müller counter to measure the quantity of radiation particles. On the
counter a quantum mechanical interaction with a particle from radioactive material with
atoms in the counter creates several free electrons, which affects successive ionization of
atoms, called an avalanche, resulting in a macroscopic current. This process plays an
important role in the well known “Gedanken Experiment” of Heisenberg. In this experiment
the electric current produced by the quantum mechanical interaction kills a cat, so that the
state of the cat is illustrated as a quantum mechanical transition from an alive state to a dead
state, which is a mysterious transition for a macroscopic and classical system such as a cat.

It should be noted here that there is an instability process between quantum mechanical
and classical states, where an unstable growth of ionization driven by a high electric
voltage is working. The application of this high voltage points to a maintenance of an
inequilibrium state, and the production of pulse current is possible only in an open system.
It is not easy to define an open system from the quantum mechanical point of view. In
general, an open system is associated with a maintenance of high energy state as in the
Geiger-Müller counter. According to quantum mechanics the higher state should make a
transition to a lower state gradually and can not be maintained constantly.

It should also be noted that the instability is an irreversible process with respect to
time. It is a unknown how the irreversible process results from an initial quantum
mechanical process, since the latter has a property of time reversibility as is explained in
the next section. Once a signal attains a certain amplitude, it propagates with a fixed wave
form, and the mechanism is well described by a model equation (HODGKIN and HUXLEY,
1952a, b). This process is possible only in an open system, because the signal is maintained
by the presence of the equilibrium potential.

In the following sections some concepts of basic physics are introduced, which are
related to neural signals. However, explanations will not be done deeply, but are confined
within the level of basic physics.

Fig. 2.  Synaptic transmission.
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2.  Time Reversibility of Classical Mechanics and Quantum Mechanics

2.1.  Classical mechanics
Phenomena in classical mechanics are governed by the equation of motion,

m
d

dt

2

2 2
x

F= ( ),

where m and x are the mass and the position vector of a particle, and F is a force acting on
it. In most cases the force F is a function of x. Reversibility of the classical mechanics is
shown by introducing the variable transformation, t → t′ = –t. Then, substituting this
transformation into Eq. (2), we have an equation which has the same form as Eq. (2),
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dt
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F
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In this the way the velocity v of the particle is transformed to v′ = dx/dt′ = –v.
The time reversibility is defined as follows. Phenomena occurring in the world with

an opposite direction of time (called a “reverse world” here) are similar to those in our
world. To be more precise, phenomena in our world and the reverse world obey the
equations of the same form. Therefore, by observing a mechanical phenomenon in the
reverse world we can not judge whether it is occurring in our world or in the reverse world.
In other words, when we see a movie film of a mechanical phenomenon run inversely, we
do not experience the motion in the film as unnatural. An example of this mechanical
phenomenon and its reverse process are shown in Fig. 3.

In the process (a) a ball collides with a resting ball, after which the two balls apart
while rotating clockwise. In the reverse process (b) two balls rotating anti-clockwise
approach each other, and after collision one of them stops and another moves away without
rotation. Both of these processes can occur in our world.

Let us consider another example with a charged particle experiencing the Lorentz

(a) (b)

Fig. 3.  Collision of a ball with another ball (a) and its reverse process (b). After the collision (drawn with dashed
lines) the ball begins to rorate (a) or stop to rotate (b).
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force F = ev × B, where e is the electric charge of the particle, v is its velocity and B is a
magnetic field. In the reverse world both v and B change their directions (note that an
electric current that produces B changes its direction), hence the vector products of these
vectors is unchanged by a time reversal and Eqs. (2) and (3) have the same form.

2.2.  Quantum mechanics
Phenomena in quantum mechanics are governed by the Schödinger equation:

  
i

t
Hh

∂
∂

= ( )Ψ Ψ, 4

where i is the imaginary unit, � = h/2π (h is the Planck constant), Ψ is the wave function
and H is the Hamiltonian operator. It is usually assumed that H is Hermitian, i.e. H = H+

(the suffix + denotes Hermitian conjugate) meaning that the two inner products are equal,
<Φ|HΨ> = <HΦ|Ψ>, for any pair of wave functions Φ, Ψ.

Following the transformation, t → t′ = –t and by taking the complex conjugate, Eq. (4)
becomes
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∗
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where the suffix * denotes the complex conjugate. By comparing Eqs. (4) and (5) we can
see that Ψ* in the reverse world is governed by the same Hamiltonian H as Ψ is governed
in our world. The wave function Ψ* corresponds to the same probability distribution as Ψ,
while the direction of wave propagation is reversed. Therefore, a wave function with
reversed propagation direction behaves similar to that in our world. This demonstrates the
time reversibility of quantum mechanics.

(a) (b)

Fig. 4.  Scattering of a plane wave by a stationary potential (hatched region) (a), and its reverse process (b). In
the reversed process the wave gathers towards the potential region, and after scattering it changes to a plane
wave. This process should occur also in our world.
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An example to demonstrate the reversibility of quantum mechanics is a scattering of
a particle wave by a stationary potential, as given in Fig. 4. The reverse process with the
reversed direction of propagation can occur also in our world because it is governed by the
same Hamiltonian.

3.  Origin of Irreversibility in Real World

Origin of irreversibility was first treated theoretically in 1872 by L. Boltzmann, who
derived the Boltzmann equation and then proved the H-theorem, which is concerned with
the irreversibility of phenomena in many body systems. Later, in 1928 W. Pauli derived an
equation governing irreversible processes from quantum mechanics, which is called
Pauli’s transport equation and is equivalent to what is known as “master equation”.
Readers are may refer to suitable textbooks for details , for example to REIF (1965),
ZUBAREV (1974) and HAKEN (1978). Brief explanations of the Boltzmann equation, the H-
theorem and the master equation, etc. will be given here. The aim of this section is to
suggest that a cut-off a part of information from variables of many body systems leads to
governing equations of irreversible processes.

3.1.  Boltzmann equation for a gas of classical molecules
Boltzmann treated a probability density f(x, v, t) of a gas of many classical molecules

with position x and velocity v. In the case without collision of molecules the change of f(x,
v, t) with time, denoted by Df, is expressed as follows:

Df
f
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where m is the mass of the molecules and F is the force exerted on them. In this case the
change in distribution with time is looked upon as a deformation of the distribution, while
convected in phase space (x, v) by the flow within it. This kind of change allows reverse
processes, hence Eq. (6) contains no irreversibility. This situation is often explained in an
analogy with a mixing of a dye in the water. The dye deforms to a complicated shape
through convection by the water flow, but no microscopic mixing occurs. If the water flow
is exactly reversed everywhere at a certain instant, the deformed dye comes back to the
original shape. It is noted that a generalization of Eq. (6) leads to the Lieuville equation in
classical and the quantum mechanics.

In the case with collisions between molecules, the right-hand side of Eq. (6) is replaced
by Dcf, which stands for rapid changes of f via collisions. In general, collisions are
characterized by a scattering cross section, denoted by σ(v1, v2 → v′1, v′2), which indicates
that the size of a molecule is recognized by each other during the collision process entailing
velocity changes (v1, v2 → v′1, v′2). By assuming that f does not depend on x, and further
that

i) the gas is sufficiently dilute so that only two body collisions are present,
ii) the external force F does not affect collisions,
iii) f(x, v, t) is almost constant during the short collision time,
iv) velocities of the two molecules before collision have no correlation,
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with symmetry properties for each collision process:

σ(v1, v2 → v′1, v′2) = σ(–v′1, –v′2 → –v1, –v2) (time reversibility),

σ(v1, v2 → v′1, v′2) = σ(–v1, –v2 → –v′1, –v′2) (space reversibility),

Dcf is expressed as follows:

D f f t f t f t f t d d dc vvv
= ( ) ( ) − ( ) ( ){ } →( ) ( )∫∫∫ x v x v x v x v V v v v v v v v, , , , , , , , , , ,′ ′ ′ ′ ′ ′

′′ 1 1 1 1 1 11111

7σ

where V = v – v1 is the relative velocity before collision. Then, the Boltzmann equation
becomes

Df D fc= ( ), 8

where the left- and the right-hand sides of Eq. (8) are expressed by Eqs. (6) and (7),
respectively.

It is proved by the use of Eq. (8) that the H function H = ∫dvflnf , which was first
introduced by J. W. Gibbs, satisfies the H-theorem,

dH

dt
≤ ( )0 9,

where the equality corresponds to the case with f(v′)f(v1′) = f(v)f(v1) for any combination
of velocities before collision. This condition is essentially the same as the so-called
“detailed balance”, which means, roughly speaking, that the initial and final states of a
collision have the same probability densities.

It should be noted that the H theorem claims an irreversibility of the gas state, which
approaches an ultimate state (the thermal equilibrium). The H function gives a definition
of entropy after adding the factor –k (k is the Boltzmann constant). It should be also noted
that the assumption iv) is the most important in deriving the Boltzmann equation. This
assumption means a cutoff in information before collision. Note that a mechanism with a
complete set of information of molecules is equivalent to classical mechanics, which
assures reversibility of processes as mentioned in Sec. 2.

3.2.  Master equation for an ensemble of quantum molecules
PAULI (1928) gave a quantum mechanical interpretation of the Boltzmann equation by

replacing the classical state of molecules (x, v) with a quantum state j with energy εj and
derived the following equation, called “Pauli’s transport equation”, for the number of
molecules Nj:

dN

dt
A N N A N Nj

ij i j i j i j ij i j
i i j

= −( ) ( )∑ , ,
, ,

,′ ′ ′ ′ ′ ′
′ ′

10
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where Aij,i′j′ is the transition probability for a pair of states from (i, j) to (i′, j′). Note that this
transition is limited to that with energy conservation, i.e. εi + εj = εi′ + εj′. The H theorem
(9) is valid also for a H function H = ∑NjlnNj, hence Eq. (10) governs irreversible processes.
If a set of molecules with energies (ε1, ε2, ..., εn) is denoted by α, Eq. (10) is rewritten into
the following equation for a probability Pα:

dP

dt
W P W Pα

αβ β βα α
β

= −( ) ( )∑ , 11

where Wαβ is a transition probability. This equation is called “master equation”, and
governs irreversible processes of quantum states. The first term of the right-hand side
means a gain of the state α by transition from β, while the second term means a loss by
transition from α.

It is noted here that the origin of irreversibility in the master equation lies in treating
only probabilities, which are defined by absolute values of wave functions Pα = <Ψα|Ψα>,
and the phase of the wave function is neglected. A more careful treatment of the transition
probability reveals that the master equation can be derived if the pair of states α and β have
no correlation (in other words they have random relative phase), i.e. a part of information
is cut off. The work by VAN HOVE (1955, 1957) is worth noting here. He proved that the
master equation is derived, if the random phase approximation is introduced only at the
initial time. There is a claim also that the initial randomness is not necessary for derivation
of the master equation (JANNER, 1962).

4.  General Formula for a Cut-off in Information

Since the origin of irreversibility is associated with the cut-off in information of
systems, it will be meaningful to give a general formula to describe effects of this
phenomenon. Let a state of classical or quantum system be expressed by a set of variables
q = (q1, ..., qn), and a function f (q1, ..., qn) be governed by the following linear equation:

∂
∂

= ( )f

t
Lf . 12

The Schrödinger equation (4) has this form. Let the variables q = (q1, ..., qn) be composed
of two sets q′ = (q1, ..., qm) and q″ = (qm+1, ..., qn), where the former is a set of variables
(observed easily) describing the apparent world and the latter is that for a hidden world (not
observed or cut off).

Here a projection operator P is introduced to transform the function f to f′, where the
two sets of variables are separated, i.e.

f Pf f q q q f q q dq q′ ′ ″ ″ ′ ″ ″ ″= = ( ) ( ) = ( ) ( ) ⋅ ( ) ( )∫ϕ ψ ϕ, , 13

where ϕ(q″) is a function describing the state in the hidden world, and ψ(q″) is an adjoint
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function of ϕ(q″), so that

ψ ϕq q dq″ ″ ″( ) ( ) = ( )∫ 1 14.

It is easily shown that P satisfies P2 = P, which is a condition for the projection operator.
This projection can be understood as picking up apparent variables, while the hidden
variables are confined within a properly defined function ϕ(q″). Next, we define a
projection P* of f into a function which contains the neglected information, i.e. P*f = f″ =
f – Pf or P* = 1 – P. P* is also an projection operator, since it satisfies (P*)2 = P* . These
operators satisfy P + P* = 1.

When these two projections are operated on Eq. (12), we have the following two sets
of equations:

∂
∂

( ) = = + ∂
∂

= + ( )∗

t
Pf PLf PLPf PLP f

f

t
PLf PLf,    ,or   14a

′ ′ ″

∂
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∂
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t
P f P Lf P LP f P LP f

f

t
P Lf PLf,    .or   14b

″ ″ ′

These are simultaneous equations for f′ and f″. By integrating Eq. (14b) formally, we have

f q q t t P L P Lf q q d tP L f q q
t

″ ′ ″ ′ ′ ″ ″ ′ ″, , exp , , exp , , .( ) = −( ){ } ⋅ ( ) + ( ) ( ) ( )∗ ∗ ∗∫ τ τ τ 0 15
0

The integral term in Eq. (15) shows a continuous effect of the apparent world on the hidden
world owing to the dynamics L, and the second term reveals an effect of the initial state.

By substituting Eq. (15) into Eq. (14a) and integrating it, we have a governing equation
for the apparent world f′,

∂
∂

= + −( ){ } ⋅ + ( ) ⋅ ( ) ( )∗ ∗ ∗ ∗∫
f

t
PLf PL t P L P Lf d PL tP L P f

t′ ′ ′ ″exp exp .τ τ 0 16
0

The first term on the right-hand side corresponds to the dynamics described in terms of the
apparent variables, the second term is the effect of the dynamics which relates the apparent
world to the hidden world and then comes back to the apparent world. Finally, the last term
is the effect of the initial hidden world. Equation (16) is an exact equation for f′, when the
effect of the hidden world is not neglected (it works through the second and the third terms).
Note that the second term is expressed as an integral of the past processes, which means that
a neglect of information is associated with an appearance of hysteresis or, in other words,
an appearance of non-Markovian nature.

When the effect of past processes decays rapidly, i.e. the second and the third terms
are neglected, the system recovers the Markovian nature and f′ is governed solely by the
dynamics of the apparent world. Note that the dynamics governed by PL are not necessarily
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reversible, even if the same process governed by L is reversible.
A good example of recovery of Markovian nature is the derivation of the diffusion

equation of molecules. The diffusion is driven by Brownian motions of molecules, which
would be governed by the Langevin equation (an equation of motion for each molecule
which is receiving a linear frictional force and a random impulsive force). The velocity
variables of molecules are looked upon as hidden variables and the macroscopic spatial
distribution of molecules is the apparent world. It is possible to write an equation
corresponding to Eq. (16), which governs the spatial distribution of molecules. Then, by
assuming that the mean free path of molecules is much smaller (at the typical scale of
molecular distributions, where the effects of past processes disappear), the (Marikovian)
diffusion equation of spatial distribution can be revovered.

5.  Open Systems—Maintenance of Inequilibrium

5.1.  An example of open system
As is noted in Section 1, generation and transmission of neural signals occur as

irreversible processes in an open system. However, the basic definition of open systems is
not yet enough understood. A typical example of phenomena in open systems would be the
Benard convection, which is a convection flow between two horizontal plates with fixed
temperatures, as shown in Fig. 5. In order to assure constant temperature of the plates, they
are in contact with large heat baths, and a continuous heat flow must be given from the
upper plate (lower temperature) to the lower plate (higher temperature). The convection
flow in the fluid is assumed to maintain its flow structure through energy consumption from
the heat pump. To simplify the situation we will neglect the plates and consider the fluid
system to be in contact with two heat baths.

Observing the system shows that thermal convection is initiated when the temperature
difference ∆T = T′ – T″ becomes larger than a critical value, below which the fluid stays
at rest and the heat flow occurs only through thermal conduction.

There is a more complicated situation in the thermal convection, as shown in Fig. 6.
When the temperature difference ∆T lays between two specific values (∆T1 and ∆T2),

Fig. 5.  Total system to create thermal convection. T′ should be higher than T″ for onset of convection.

heat bath  T "

heat bath  T ’

heat
pump
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convection grows only if external disturbance of a finite strength is provided: weaker
disturbances decay and the system comes back to the static state. This situation is illustrated
in Fig. 6 indicated by arrows.

5.2.  A system contact with a heat bath
Behaviour of a system in contact with a heat bath can be understood in the framework

of quantum mechanics (REIF, 1965). Let a system A be in contact with a heat bath A′, as
shown in Fig. 7. Let the system A0 = A + A′ be governed by a Hamiltonian

H0 = H (system A) + H′ (heat bath) + Hi (interaction of A and A′). (17)

States of systems A and A′ are characterized by energy eigen values Er, Er′, respectively,
which are determined in the absence of the interaction. The probabilities for the systems
A and A′ to be in states r and r′ are denoted by Pr and P′r′, respectively. Transition of states
occurs owing to the interaction Hamiltonian, and the probability from a pair of states (r, r′)
to (s, s′) is denoted by W0 (rr′ → ss′). Then, from the energy conservation we have W0 (rr′
→ ss′) = 0 for E0 = Es + Es′ ≠ Er + Er′. Equality of probabilities of a transition and an opposite
transition is assured by quantum mechanics, i.e. W0 (rr′ → ss′) = W0 (ss′ → rr′).

In the case where both systems are in thermal equilibrium, we have the canonical
distribution

Pr = exp(–βEr),   where   β = 1/kT. (18)

On the other hand, if A and A′ are not in equilibrium, the transition probability of the
system A, i.e. Wrs (from the state r to the state s) is not equal to that from s to r, Wsr, for the
following reason. Even in the inequilibrium case the heat bath A′ is almost in equilibrium,
and the canonical distribution applies. Then, both transitions are written as follows:

W P W rr ss const E W rr ssrs r
r s

r
r s

= →( ) = ⋅ −( ) →( )∑ ∑′
′ ′

′
′ ′

′ ′ ′ ′ ′0 0exp ,β

Fig. 6.  Growth or decay of thermal convection indicated by arrows. It depends on the temperature difference
(abscissa) and the strength of initial disturbance (ordinate).

T2T1 T

Strength of
convection
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W P W ss rr const E W ss rrsr s
r s

s
r s

= →( ) = ⋅ −( ) →( )∑ ∑′
′ ′

′
′ ′

′ ′ ′ ′ ′0 0exp .β

Then, by the use of the conditions W0(rr′ → ss′) = W0(ss′ → rr′) (derived by quantum
mechanics) and Es′ – Er′ = Er – Es (energy conservation), we have a relation between the
two transition probabilities,

W E E W

W const E W const E

sr r s rs

sr s rs r

= − −( ){ }
= ⋅ ( ) = ⋅ ( ) ( )

exp ,

exp ,    exp .

β

β βhence   19

Therefore, the transition probability to higher energy state is smaller than the opposite one.
The master equation of the system A in this case is

dP

dt
P W P W const P E P E

a b E P

r
s sr r rs

s
s s s r

s

r r

= −( ) = ⋅ ( ) − ( ){ }
≡ − ( ) ( )

∑ ∑ exp exp

exp ,

β β

β 20

where a and b are constants. This equation suggests that the state of the system A is not
stationary, and Pr approaches to Pr = a/b·exp(–βEr), i.e. the canonical distribution in
equilibrium.

Equation (19) allows another interpretation by introducing a concept of entropy.
Entropy increase is defined by a heat input divided by temperature, i.e. ∆E/T. Since the heat
bath A′ is much larger than the system A, the increase of entropy of the system A0 in the
transition ss′ → rr′ is mainly given by that of A′, i.e.

∆S
E E

T
k E E k E Er s

r s r s≅
−

= −( ) = − −( ) ( )′ ′
′ ′β β . 21

Fig. 7.  A system A in contact with a heat bath A′.

A  Er

heat bath

A'  Er'



Some Physical Questions Concerning Signal Generation in Neurons 51

Then, Eq. (19) can be written as

W
S

k
Wsr rs= 



 ( )exp .

∆
22

Therefore, Wsr is larger than Wrs , if the entropy increases with the transition ss′ → rr′, i.e.
the transition with increasing entropy occurs more frequently in accordance with the
second law of thermodynamics.

5.3.  A system contact with two heat baths
For the thermal convection shown in Fig. 5, the total system is composed of at least

three parts, system A and two heat baths A′ and A″ (the heat pump could be neglected by
assuming that the heat baths are almost in equilibrium). The heat baths are assumed to be
almost in equilibrium with values β′ and β″ for the parameter β, as shown in Fig. 8. Let us
assume a higher temperature, i.e. β′ < β″. In this case, we can not expect a complete
equilibrium state, nor can we introduce a temperature for the system A. In classical fluid
dynamics a temperature distribution T(x, t) is introduced to analyze the convection flow,
but it is not a properly defined concept in quantum mechanics.

Let us introduce a Hamiltonian of the total system, H (system A) + H′ (heat bath A′)
+ H″ (heat bath A″) + Hi′ (interaction of A with A′) + Hi″ (interaction of A with A″), and
the transition probabilities of the total system, W0(rr′r″ → ss′s″) = W0(ss′s″ → rr′r″). It
should be mentioned that this view is an original suggestion of the present paper, although
the possibility remains that similar views have been suggested before. As in the previous
subsection, the transition probabilities of the system A, Wrs and Wsr, are compared, by
expressing them as follows:

Fig. 8.  System of a fluid layer A in contact with heat baths A′ and A″.

A  Er

    A"  

 Er"  "

   A'

Er' '

– "

E"
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W P P W rr r ss s W P P W ss s rr rrs r r
r r s s

sr s s
r r s s

= →( ) = →( ) ( )∑ ∑′ ″
′ ″ ′ ″

′ ″
′ ″ ′ ″

′ ″ ′ ″ ′ ″ ′ ″0 0 23,    .

Since both heat baths are almost in equilibrium, i.e. the canonical distributions are
established, and Ps′ and Ps″ are expressed as follows:

P P E E P P E Es r r s s r r s′ ′ ′ ′ ″ ″ ″ ″′ ″= −( ){ } = −( ){ } ( )exp ,    exp .β β 24

By the use of these relations and the equality of W0 in both directions, we can rewrite Wsr
as follows:

W P P W rr r ss s E E E Esr r r r s r s
r r s s

= →( ) −( ) + −( ){ } ( )∑ ′ ″ ′ ′ ″ ″
′ ″ ′ ″

′ ″ ′ ″ ′ ″0 25exp .β β

If entropy increases in the systems A′ and A″ the transitions (ss′s″ → rr′r″) are defined
by ∆S′ = kβ′(Er′ – Es′) and ∆S″ = kβ″(Er″ – Es″), respectively and the exponential factor in
Eq. (25) is written as exp(∆S′/k + ∆S″/k). Therefore, the transition probability Wsr is larger
than Wrs, if the total entropy increases, and the system A moves in this direction.

Next, we denote energy increases of the system A in the transition s → r through heat
flows from A′ and A″, respectively, by –∆E′ = Er′ – Es′ and –∆E″ = Er″ – Es″, and express
β′ and β″ by an average value and their difference, i.e.

β β β β β β′ ″= − = + ( )1

2

1

2
26∆ ∆,    .

Then, the exponential factor in Eq. (25) is rewritten as

exp exp .− +( ){ } ⋅ − −( ){ } ( )β β∆ ∆ ∆ ∆ ∆E E E E′ ″ ′ ″ 27

Since the heat flow occurs in the direction A′ → A → A″ (see Fig. 8), we have ∆E′ > 0 and
∆E″ < 0, and ∆E′ – ∆E″ indicates the total heat flow. Thus, we can say that the system A
makes a transition s → r less frequently if it is associated with increasing energy of A, and
associated with stronger heat flow. The former condition is analogous to the property of
canonical distribution in the equilibrium case, and the latter suggests the principle of
minimum entropy production given by I. Prigogine (GLANSDORFF and PRIGOGINE, 1971).

The above analysis is useful to predict that the system A develops towards a certain
static state with low energy and a small heat flow. However, in real systems the static state
is only possible when ∆β (temperature difference) is small enough, as is mentioned in
Subsec. 5.1. There is a critical value of ∆β, above which a dynamical thermal convection
arises. An analysis predicting this fact may be quite complicated and is not given here. It
is, however, suggested that one may be able to proceed further in this question by modifying
the assumption of equilibrium regarding the heat baths A′ and A″.
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6.  Concluding Remarks—Interpretations of Basic Phenomena in Neurons

We have discussed some basic principles in a physical view, employing some aspects
of quantum mechanics and statistical physics. Here, I come back to the issue of signal
generation and transmission in neurons and will suggest ways on how to involve these
physical aspects in the physiological description of neural activities. At this point these
suggestions are necessarily rather speculative, but it is hoped that they may still contribute
to further development in the neuro-physics of open biological systems.

The initial stage of an electric current generation at the post-synaptic membrane sets
out with the interaction of molecules to a sub-domain (or a radical) of a post-synaptic
receptor protein. Subseqently, ion channels change their gating state allowing for the
passage of ions through the permeation path of the channel. It can be expected that, with
increasing chemical resolution, this process should principally be described in terms of
quantum chemistry and thus quantum mechanics (BERNROIDER and ROY, 2004).

Channel opening leads to a generation of a current along with a changing electric
voltage which was established at the “resting” membrane state. This stage is associated
both with quantum mechanics and statistical physics. The membrane resting potential
indicates a sustaining, unstable state, which is homologue to the sustaining temperature
difference between both boundaries of a thermal convection. However, if the resting
potential would be a stable given condition, the initial ion motions are best described by
quantum mechanics.

As the number of moving ions increases, an electric current of macroscopic order is
established. This process is described by Ohm’s law and belongs to statistical physics. It
should be noted here, that although this process, engaging many ions, could in principle be
treated by quantum mechanics, it is actually impossible due to its inherited complexity. The
most difficult problem at this stage is the recognition of a mechanism of how the complexity
increases. Since statistical treatment of complex systems is inevitably associated with a
cut-off in information, there may be a possibility that this mechanism may be approximated
to a certain degree by applying the formalism using a projection operator as mentioned in
Sec. 4. However, actual manipulation of this formalism is still far too complicated and can
not be developed here.

After the neural signal is established, the mechanism of signal transmission is very
successfully described by the Hodgkin-Huxley model (HODGKIN and HUXLEY, 1952a, b).
It is based upon assumptions of relaxations of ion conductions through membranes
involving coefficients which are nonlinear functions of the membrane voltage. In my view,
this model can be looked upon as a special case of the master equation. The process of signal
transmission is essentially a phenomenon taking place in an open system. Moreover, the
axon membrane elicits pulse-type Hodgkin-Huxley signals when the membrane potential
is raised above a certain threshold value, which seems to be analogous to the onset of
convection owing to a disturbance with certain strength.

Finally, I can conclude that the description of neural signal transmission in terms of
quantum mechanics could be promissing, if the understanding of open system within the
context of quantum mechanics and statistical physics further increases.



54 R. TAKAKI

This author would like to express his thanks to G. Bernroider, University of Salzburg, Austria,
for suggesting to write this paper. He also wishes to thank Professor H. Ezawa of Gakushuin
University of Japan for his valuable advices about previous work on the master equation.

REFERENCES

BERNROIDER, G. and ROY, S. (2004) Quantum-classical correspondence in the brain: Scaling, action distances
and predictability behind neural signals, FORMA, 19, this issue, 000–000.

GLANSDORFF, P. and PRIGOGINE, I. (1971) Thermodynamic Theory of Structure, Stability and Fluctuations,
Wiley & Sons.

HAKEN, H. (1978) Synergetics—An Introduction, Nonlinear Phase Transition and Self-organization in Physics,
Chemistry and Biology, Sprinfer Verlag.

HODGKIN, A. L. and HUXLEY, A. F. (1952a) J. Physiol., 116, 449.
HODGKIN, A. L. and HUXLEY, A. F. (1952b) J. Physiol., 117, 500.
JANNER, A (1962) Helv. Phys. Acta, 35, 47.
PAULI, W. (1928) Sommerfeld Festschrift, Leipzig.
REIF, F. (1965) Fundamentals of Statistical and Thermal Physics, McGraw-Hill, Inc.
VAN HOVE, L. (1955) Physica, 21, 517.
VAN HOVE, L. (1957) Physica, 23, 411.
ZUBAREV, D. N. (1974) Nonlinear Statistical Thermodynamics, Consultants Bureau, N.Y.


