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Abstract.  The recent controversy of applicability of quantum formalism to brain dynamics
has been critically analyzed. PELLIONISZ and LLINÁS (1982) proposed a functional
geometry to understand the internal representation of the events associated to the space-
timing of moving objects in the external world. The joint representation of space and time
associated to an event as understood by the brain is shown to be different from that
understood in modern physics. This indicates that the four-dimensional geometry i.e.
Minkowski geometry is not an appropriate description for the internal world. If it is to be
the case, the applicability of any kind of quantum field theory in modeling brain function
has to be analyzed with great care. Here, the issue of applicability of quantum mechanics
to brain function has been discussed in general, from an anatomical perspective and then
particular emphasis has been given to the applicability of quantum field theory.

1.  Introduction

The possible applicability of quantum formalism, especially in the microscopic level
of brain dynamics raises a lot of arguments, and counter arguments indicating the
seriousness of the concerned problems among the scientific community (TEGMARK, 2000;
HAGAN et al., 2002). Several authors (RICCARDI and UMEZAWA, 1967; STAPP, 1990, 1993;
HAMEROFF and PENROSE, 1996; JIBU et al., 1996; VITIELLO, 2001) claimed that quantum
processes and collapse of wave function in the brain are of the importance to help us in
understanding the information processing and higher order cognitive activities of the brain.
Even before, in 1991, PRIBRAM (1991) proposed the holographic model to understand the
information processing in the brain.

However, before applying any kind of such approach, the most fundamental, rather
thorny issue which should have been resolved, has not been addressed. It is to be noted that
before applying any form of quantum mechanics (in the non-relativistic domain), one of the
prerequisites is to investigate whether the anatomical structure of the brain permits
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assigning any kind of smooth geometric notion like the distance function, or orthogonality
in the neuromanifold. For applying quantum filed theoretic model to memory function or
spontaneous symmetry breaking, one needs to construct space-time geometry in
Minkowskian sense over this neuromanifold.

Pelionisz and Llinás (PELIONISZ and LLINÁS, 1982, 1985; LLINÁS, 2002) analyzed the
functionality of Central Nervous System (CNS), related to cognition of the event associated
to a moving object in the external world. According to their observations, as the conduction
speeds through various axons for any external stimulus they are different, and there should
exist a time delay at the neuronal level. So the concept of simultaneity (as considered in the
special theory of relativity) is hard to be realized conceptually, in case of space-timing for
the internal representation of the brain dynamics. We think one should address these issues
before applying any kind of quantum formalism to understand the information processing
and higher order cognitive activities (ROY and KAFATOS, 2003). Also, it might be
interesting to look into the plausibility of finding any form of indeterminacy relation with
Planck’s constant h or any other kind of constant, say, a brain constant, at any level of
brain functions.

The intent of this paper is as follows: first we analyze the anatomical structure of the
brain and its relation to Euclidean or non-Euclidean distance and then the possibility of
assigning space-time (four dimensional) representation. PELIONISZ and LLINÁS (1982,
1985) have shown that our present understanding of brain function does not permit to
assign space-time representation. They considered a tensor network theory where they
assigned a metric tensor gij to the Central Nervous System (CNS). However, for global
activities of the brain, i.e., to define the metric tensor over the whole neuromanifold, this
raises a lot of difficulties. For example, some cortical areas are non-linear or rough, so the
tensor network theory becomes very much complicated and almost intractable to solve the
mathematical equations. In one of our recent papers (ROY and KAFATOS, 2002), we
proposed that the statistical distance function may be considered over the entire
neuromanifold considering the selectivity properties of neurons (HUBEL, 1995). In this
paper, we explain that the statistical distance function and the statistical metric tensor
considered are very important concepts in understanding the above mentioned issues.

2.  Functional Geometry and Space-time Representation

The internalization of external geometries into CNS and the reciprocal (PELLIONISZ

and LLINÁS, 1985) has created much interest for the last two decades. The central tenet of
their hypothesis is that brain is a tensorial system. This hypothesis is based on the
consideration of covariant sensory and contra-variant vectors representing motor behavior.
Here, CNS acts as the metric tensor which determines the relationship between the
contravarint and covariant vectors. The contra-variant observable theorem has been
discussed in the context of Minkowskian geometry as well as in stochastic space-time and
quantum theory. It can be stated (and can be proved in weak sense) that measurements of
dynamical variables are contra-variant components of tensors. This means that whenever
a measurement can be reduced to a displacement in a coordinate system, it can be related
to contra-variant components of the coordinate system. To make an observation of a
dynamical variable as position or momentum, the measurement is usually done in the form
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of reading of a meter or similar to that. Through a series of calculations one can reduce the
datum to a displacement of in a coordinate system.

MARGENAU (1959) analyzed this issue and claimed that the above reduction can give
rise to a measurement if it satisfies the following two requirements. It must be repeatable
with the same results and must be physically useful quantity. This can be easily shown in
the context of Minkowski space. The motivation of Pellionisz and Llinás was to find a
possible single underlying entity, capable of representing any set of particular neuronal
networks i.e., whether data derived from particular neuronal networks can be generalized
to another set of neuronal networks (from a brain to the brain). This is equivalent to
consider the brain as a geometric object. However, they have shown that a space-time
representation (in the sense of Minkowski geometry) can not be assigned to the internal
representation.

The arguments can be briefly described as follows: CNS function can be compared
with a procedure like taking the picture of a moving object not with instantaneous flash but
replacing the light with a set of axons (each having a different conduction time). Now,
through differently delayed neuronal signals, the simultaneous external events will not be
represented in the CNS as simultaneous. In other words, simultaneous onset of firings of
a group of neurons with different conduction times will not produce a set of simultaneous
external events. Hence, the assignment of space-time geometry to the functional geometry
of neurons is not possible, at least, within the purview of present understanding of brain
dynamics.

It appears that a three dimensional space and one time can be assigned to the internal
representation. But to assign this kind of space and time structure over the global activities
of brain (i.e. to account for the holonomic like information processing), one needs to define
a smooth metric tensor over the whole neuromanifold. A family of neural networks forms
a neuromanifold. However, as some cortical areas of brain are more non-linear and rough
than others, it seems to be very difficult to construct a smooth metric tensor over the
neuromanifold. In fact, the mammalian cerebral cortex has the form of a layered thin shell
of gray matter surrounding white matter. The cortical mantle is one of the most important
features of the brain and it plays a tremendously important role in understanding brain
functions. Although the cortical surface is an important feature of mammalian brain, the
precise geometry and variability of the cortical surface are not yet understood clearly.
Attempts have been made in the VAN ESSEN LABORATORY to construct mathematical
representation of a typical cortical surface. This representation allows us to make statements
about the geometry of the surface as well as its variability. Considering the surface as two-
dimensional manifold in brain volume, it enables one to compute geometrical properties as
the Mean and the Gaussian curvature of the surface.

Recently, NAKAHARA and AMARI (2002) used the concept of Information Geometry
to understand the geometrical structure of a family of information systems. The information
systems consist of a hierarchical structure of neuronal systems with feedback and feed-
forward connections. AMARI (2001) introduced a duality structure within the Bayesian
framework from the point of view of information geometry. However, he considered a
manifold equipped with Riemannian metric formed by a family of distributions. In this
framework, the Minkowskian space-time representation, is not realizable due to the lack
of existence of positive definite distribution functions for four dimensional space-time.
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3.  Quantum Formalism

Recent work (STAPP, 1991, 1993; PRIBRAM, 1991; HAMEROFF and PENROSE, 1996;
JIBU et al., 1996; BECK, 1996; BECK and ECCLES, 1998; ALFINITO and VITIELLO, 2000) on
the applicability of quantum formalism in understanding brain function have led to
consider several fundamental issues related to functional geometry of brain.

In the quantum theory of mind-brain, described by Stapp, there are two seperate
processes. First, there is the unconscious mechanical brain process governed by the
Schrodinger equation which involves processing units that are represented by complex
patterns of neural activity (or more generally, of brain activity) and subunits within these
units that allow “association” i.e., each unit tends to be activated by the activation of several
of its subunits. An appropriately described mechanical brain evolves by the dynamical
interplay of these associative units. Each quasi-classical element of the ensemble that
constitutes the brain creates, on the basis of clues, or cues, coming from various sources,
a plan for a possible coherent course of action. Quantum uncertainties entail that a host of
different possibilities will emerge. This mechanical phase of the processing already
involves some selectivity, because the various input clues contribute either more or less to
the emergent brain process according to the degree to which these inputs activate, via
associations, the patterns that survive and turn into the plan of action. HAMEROFF and
PENROSE (1996) discussed the issue of consciousness taking into consideration quantum
coherence. In brief, their model has the following arguments:

1. Quantum coherence and wave function collapse are essential for consciousness
and occur in cytoskeletal microtubules and other structures within each of the brain’s
neurons.

2. Quantum coherence occurs among tubulins in microtubules, pumped by thermal
and biochemical energies. Evidence for some kind of coherent excitation in proteins has
recently been reported by VOS et al. (1993). The feasibility of quantum coherence in
seemingly noisy, chaotic cell environment is supported by the observation that quantum
spins from biochemical radical pairs which become separated retain their correlation in the
cytoplasm.

3. For the objective reduction as put forward by Penrose and Hameroff, superposed
states have each their own space-time geometries. When the degree of coherent mass-
energy difference leads to sufficient separation of space-time geometry, the system must
choose and decay to a single universe state. Thus Orchestrated Objective Reduction (OOR)
involves self selections in fundamental space-time geometry.

4. It is shown that a brain neuron has roughly 107 tubulins. If 10% of tubulins within
each neuron are involved in quantum coherent state, then roughly 103 neurons would be
required to sustain coherence for 500 msec, i.e., to reach the quantum gravity threshold for
successful occurrence of OOR.

According to these authors, one possible scenario for the emergence of quantum
coherence leading to OOR and conscious events is cellular vision. ALBRECHT-BUEHLER

(1992) has observed that single cells utilize their cytokeletons in cellular vision-detection,
orientation and directional response to beams of red/infrared light. JIBU et al. (1996) argued
that this process requires quantum coherence in microtubules and also ordered water.
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PRIBRAM (1991) developed the holographic concept in his model of the brain.
According to him, the brain encodes information on a three dimensional energy field that
enfolds time and space, yet allows to recall or reconstruct specific images from the
countless millions of images stored in a space, slightly smaller than a melon. From their
experimental findings, he and his collaborators studied in detail the implications of
Gabor’s quanta of information (GABOR, 1946) for brain’s function and their relation to
Shannon’s measure, on the amount of information from the data. They (JIBU et al., 1996)
also studied how the quantum mechanical processes can operate at the synapto-dentritic
level. According to their views, something like superconductivity can be operative by
virtue of boson condensation over short ranges when the water molecules adjacent to the
internal and external hydrophilic layers of the dendritic membrane become aligned by the
passive conduction of post synaptic excitatory and inhibitory potential changes initiated at
synapses (JIBU et al., 1996).

It is generally argued that the brain is warm and wet. It is interesting to note that recent
theoretical and experimental papers support the prevailing opinion (TEGMARK, 2000) that
such large warm systems will rapidly lose quantum coherence and classical properties will
emerge. In fact, the rapid loss of coherence would naturally be expected to block any crucial
role for quantum theory in explaining the interaction between our conscious experiences
and the physical activities of our brains. However, HAGAN et al. (2002) claimed that at
certain level, quantum coherence can be retained as the decoherence time will be effectively
delayed.

It is clear from the above discussions that it is necessary to use either non-relativistic
quantum mechanics or quantum field theory for the description of activities of the brain.
For any kind of quantum field theoretic approach one needs to define the field functions
over relativistic space-time as a prerequisite. So far, experimental evidence regarding the
anatomy of brain does not permit the space-time description (in a Minkowskian sense), and
consequently, any type of quantum field theoretic model is hard to be conceivable, at least,
at the present state of understanding in brain dynamics.

However, in order to apply any kind of non-relativistic quantum mechanics, the basic
prerequisites are Hilbert space structure and the indeterminacy relation. Before going into
the context of indeterminacy relation in brain dynamics, let us try to analyze the micro- and
macro- structures in the brain.

3.1.  Brain activity at various scales
The different scales of activities of brain can be classified in the following manner

(FREEMAN, 1999):
1. Pulses of single neurons, microtubles in milliseconds and microns may be

considered as the part of microstructures.
2. Domains of high metabolic demand managed in seconds and centimetres (for

measuring the spatial patterns of cerebral blood flow). This can be designated as the
macrostructure.

3. Millimeters and tenths of a second are the patterns of the massed dendritic
potentials in EEG recordings from the waking and sleeping brains. This can be considered
as an area where there might be a level of mesostructure.
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FREEMAN (1991) suggested that perception cannot be understood solely by examining
properties of individual neurons, i.e., only by using the microscopic approach (dominant
approach in neuroscience). Perception depends on the simultaneous activity of millions of
neurons spread throughout the cortex. Such global activity is nothing but the macroscopic
approach.

Micro- or macrostructures in the brain are distinguished by the scale of time or energy.
The macrostructure can be characterized by the fact that the brain lives in hot and wet
surroundings with T = 300 K. This should be discussed in the context of quantum coherence
versus thermal fluctuations. The physiological temperature T = 300 K corresponds to an
energy E ~ 1.3 × 10–2 eV. Let us now define a signal time τ = 2π/ω and �ω = E. We then
obtain

ω = 2 × 1013 s–1   or   τ = 0.3 ps.

This indicates that the physiological temperatures correspond to frequencies smaller than
the picosecond scale. They correspond to the time scale involving electronic transitions
like electron transfer or changes in molecular bonds. In cellular dynamics, the relevant time
scale is of the order of τ > 0.4 ns, where, Ecell ~ 10–5 eV (BECK, 1996). To allow comparison
with quantum scales, let us distinguish the two scales as follows:

1. The macroscopic or cellular dynamics level with time scales in the milli, down to
the nanosecond range.

2. The microscopic or quantal dynamics level with time scales in the pico, down to
the femtosecond range.

The large difference between the two time scales indicates quantum processes might
be involved in the individual microsites and decoupled from the neural networks. Recently,
BERNROIDER (2003) made an analysis by applying the concept of Lagrangian action to
brainprocesses at different scales of resolutions in order to clarify the current dispute
whether classical neurophysics or quantum physics are relevant to brain function. The
central issue of his analysis is to estimate the order of action from dimensional analysis,
relevant to brain physiology and its close proximity to quantum action i.e., � (Planck’s
constant). For example, spiking action at the single cell level is found to involve 1.8 × 10–15

Lagrange (using mechanical units) down to 2.1 × 10–16. This lies between 1018 and 1019

times Planck’s constant which is in good agreement with the time scale difference and
spiking time estimated by TEGMARK (2000). However, he pointed out that the action behind
the selective ion permeation and channel gating might be of interest at the molecular level.
Considering 105 ions permeating per msec and employing a saturating barrier model with
one or two ions crossing during that time, the action turns out to be of the order of 0.48 ×
10–34 Lagrange, which is in the range of the quantum action � (1.05459 × 10–34 MKS units).
It implies that brain functioning at a certain level might be a proper arena to apply the
quantum formalism.

3.2.  Indeterminacy relations
In communication theory, GABOR (1946) considered an uncertainty relation between

frequency (ω) and time (t) as
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δωδt = 1

2
.

This is similar to the Heisenberg energy (E)-time (t) uncertainty relation:
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where h is Planck’s constant. Now, if the quantum formalism is considered to be valid (even
in its non-relativistic form) in brain dynamics, there should exist a similar type of
uncertainty relation between frequency/energy and time, i.e.,

δωδt = b

where b may be termed here as the “brain constant”. Even if there exists such a constant
in brain dynamics, one needs to relate it to action quanta like Planck’s constant. Future
research in brain function might shed light on this important issue.

As far as the existence of Hilbert space structure is concerned, one needs to define a
smooth distance function over the cortical surface of the brain. It should be mentioned that
JOLIOT et al. (1994) found a minimum interval in sensory discrimination. Considering this
aspect, they claimed that consciousness is a non continuous event determined by the
activity in the thalamocortical system. So one needs to introduce discrete time or granularity
in space and time geometry.

4.  Probabilistic Geometry and the Neuromanifold

We describe first the geometroneuro-dynamics as proposed by ROY and KAFATOS

(2002) considering the neurophysiological point of view. Then we shall proceed to the
generalization of this approach and investigate the relevant issues from a more generalized
perspectives.

4.1.  Orientation selectivity of neurons and statistical distance
Recent research on Planck scale physics (ROY, 2003) sheds new light on the possible

geometrical structure for discrete and continuum levels. The idea of probability in
geometric structure as proposed and developed by MENGER (1942, 1949), seems to be a
very useful tool in defining distance function over the cortical areas of brain.

There is a large variety as well as number of neurons in the brain. In such case,
collective effects which can only be accounted for in terms of statistical considerations, are
clearly important. Experimental evidences point to more than 100 different type of neurons
in the brain, although the exact number is not yet decided. It is found that no two neurons
are identical, and it becomes very difficult to say whether any particular difference
represents more than the other i.e., between individuals or between different classes.
Neurons are often organized in clusters containing the same type of cell. The brain contains
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thousands of clusters of cell structures which may take the form of irregular clusters or of
layered plates. One such example is the cerebral cortex which forms a plate of cells with
a thickness of a few millimeters.

In the visual cortex itself (HUBEL, 1995), certain clear, unambiguous patterns in the
arrangement of cells with particular responses have been found. Even though our approach
could apply to non-visual neurons, here we limit our study to the neurons in the visual
cortex as the visual cortex is smoother, preventing non-linear effects. For example, as the
measurement electrode is moving at right angles to the surface through the grey matter,
cells encountered one after the other have the same orientation as their receptive field axis.
It is also found that if the electrode penetrates at an angle, the axis of the receptive field
orientation would slowly change as the tip of the electrode is moved through the cortex.
From a large series of experiments in cats and monkeys it was found:
Neurons with similar receptive field axis orientation are located on top of each other in
discrete columns, while we have a continuous change of the receptive field axis orientation
as we move into adjacent columns.

The visual cortex can be divided into several areas. The most important areas in the
visual cortex are V1, V2, V3, V4 and MT (V5). The primary visual cortex area V1 is
important for vision. It is the principal entry point for visual input to the cerebral cortex.
From this area, relays pass through a series of visual association areas in parietal and
temporal regions and finally to the prefrontal cortex where substrates for decision making
on the basis of visual cues are found. The main issues related to visual cortex are linked to
intrinsic and extrinsic relays of each cortical region, geometrically ordered microcircuitry
within appropriate areas etc. Because of the stripy appearance of area V1, this area is also
known as the striate and other areas as the extrastriate (nonstriate) visual cortex. For
example, in the monkey striate cortex, about 70% to 80% of cells have the property of
orientation specificity. In a cat, all cortical cells seem to be orientation selective, even those
with direct geniculate input (HUBEL, 1995). Hubel and Wiesel found a striking difference
among orientation-specific cells, not just in the optimum stimulus orientation or in the
position of the receptive field on the retina, but also in the way cells behave. The most
useful distinction is between two classes of cells: simple and complex. These two types
differ in the complexity of their behavior and one can make the resonable assumption that
the cells with the simpler behavior are closer in the circuit to the input of the cortex.

The first oriented cell recorded by HUBEL (1995) which responded to the edge of the
glass slide was a complex cell. The complex cells seem to have larger receptive fields than
simple cells, although the size varies. Both type of cells do respond to the orientation
specificity. There are certain other cells which respond not only to the orientation and to
the direction of movement of the stimulus but also to the particular features such as length,
width, angles etc. They originally characterized these as hypercomplex cells but it is not
yet clear whether they constitute a separate class or, represent a spectrum of more or less
complicated receptive fields. Based on this observations, we may ask now, how the
computational structure or filters can manifest as orientation detectors?

To have the answer of this question whether single neurons serve as feature or channel
detectors, in fact, PRIBRAM and his collaborators (1981 and references therein) made
various attempts to classify “cells” in the visual cortex. This proved to be impossible
because each cortical cell responded to several features of the input such as orientation,
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velocity, the spatial and temporal frequency of the drifted gratings. Furthermore, cells and
cell groups displayed different conjunctions of selectivities. From these findings and
analysis, Pribram and his group concluded that cells are not detectors, that their receptive
field properties could be specified, but rather the cells are multidimensional in their
characteristics (PRIBRAM, 1991). Thus, the pattern generated by an ensemble of neurons is
required to encode any specific feature, as found by Vernon Mountcastle’s work on the
parietal cortex and Georgopoulos’s data (PRIBRAM, 1998) on the motor cortex.

Again, it is worth mentioning that when discussing perception, FREEMAN and his
collaborators (1991) suggested that perception cannot be understood solely by examining
properties of individual neurons i.e. by using the microscopic approach that currently
dominates neuroscience research. They claimed that perception depends on the simultaneous,
cooperative activities of millions of neurons, spread throughout the expanses of the cortex.
Such global activity can be identified, measured and explained only if one adopts a
macroscopic view alongside the microscopic one.

4.2.  Statistical distance
We can define the notion of distance between the “filters” or the orientation selective

neurons which is similar to the statistical distance between quantum preparations as
introduced by WOOTTERS (1981). The notion of statistical distance can most easily be
understood in terms of photons and polarizing filters:

Let us consider a beam of photons prepared by a polarizing filter and analyzed by a
nicol prism and θ ∈ [0, π] be the angle by which the filter has been rotated around the axis
of the beam, starting from a standard position (θ = 0) referring to the filter’s preferred axis
as being vertical. Each photon, when it encounters the nicol prism, has exactly two options:
to pass straight through the prism (with “yes” outcome) or to be deflected in a specific
direction characteristic of the prism (“no” outcome). We assume that the orientation of the
nicol prism is fixed once and for all in such a way that vertically polarized photons always
pass straight through. By counting how many photons yield each of the two possible
outcomes, an experimenter can learn something about the value of θ via the formula p =
cos2θ, where p is the probability of “yes” (WOOTTERS, 1981), as given by quantum theory.

If we follow this analogy in the case of oriented neurons in the brain i.e., as if the filters
are oriented in different directions like oriented analyzers, we can proceed to define the
statistical distance.

4.3.  Statistical distance and Hilbert space
WOOTTERS (1981) first showed that the statistical distance between two preparations

is equal to the angle in Hilbert space between the corresponding rays. The main idea can
be explained as follows, imagining the following experimental set up:

Let there be two preparing devices, one of which prepares the system in a specific
state, say ψ1, and the other prepares in ψ2. Here, the statistical distance between these two
states can be thought of as the measure of the number of distinguishable preparations
between ψ1 and ψ2. However, in treating quantum systems, new features should be
observed as opposed to rolling the dice. For a dice, there is only one possible experiment
to perform, i.e., rolling the dice, whereas for a quantum system, possibility is many, one for
each different analyzing device. Furthermore, two preparations may be more easily
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distinguished with one analyzing device than with another. For example, the vertical and
horizontal polarizations of photons can easily be distinguished with an appropriately
oriented nicol prism, but can not be distinguished at all with a device whose eigenstates are
the right and left handed circular polarizations. Due to this reason, one can speak of the
statistical distance between two preparations ψ1 and ψ2 as related to a particular measuring
device which means the statistical distance is device dependent. The absolute statistical
distance between ψ1 and ψ2 is then defined as the largest possible such distance, i.e.,
statistical distance between ψ1 and ψ2 when the states are anlyzed by the most appropriate
or discriminating apparatus. We can illustrate this point little more in the following way:

Let φ1, φ2 ... φN be the eigenstates of a measuring device A, by which ψ1 and ψ2 are to
be distinguished. It is assumed that these eigenstates are non-degenerate so that there are
N-distinct outcomes of each measurement. The probabilities of various outcomes are |(φi,
ψ1)|2 if the apparatus is described by ψ1 and |(φi, ψ2)|2 if the apparatus is described by ψ2.
Then the statistical distance between ψ1 and ψ2 with respect to the analyzing device A is

dA i
i

iψ ψ φ ψ φ ψ1 2 1 1

1

2 1, cos , , .( ) = ( ) ( )











( )−

=
∑

This quantity attains its maximum value if it assumes one of the eigenstates of A, (say, φ1).
In that case, we get the statistical distance as

d(φ1, φ2) = cos–1|φ1, φ2|. (2)

This clearly indicates that the statistical distance between two preparations is equal to the
angle in Hilbert space between the corresponding rays. The equivalence between the
statistical distance and the Hilbert space distance might be very surprising at first. It gives
rise to the interesting possibility that statistical fluctuations in the outcome of measurements
might be partly responsible for Hilbert space structure of quantum mechanics. These
statistical fluctuations are as basic as the fact that quantum measurements are probabilistic
in their nature.

However, it should be mentioned that although representation of orientation of objects
in the visual cortex is fairly fine-scaled, visual information regarding the non striate visual
processing and in superior colliculus is very rough and varies in a non-linear way from that
in striate cortex. This type of nonlinearity is neglected here as we have considered
statistical considerations which average out this type of nonlinearity. Instead, we considered
here the distance between the different clusters of neurons or between the ensemble of
neurons.

4.4.  Perception and relational aspects in probabilistic geometry
The issue of continuum and discreteness remains a long standing problem over the last

few centuries. In mathematics, if the quantity A is equal to the quantity B and B is equal to
C, then A is equal to C, i.e, mathematical equality is a transitive relation. In the observable
continuum “equal” means indistinguishable. In psychology, following FECHNER (1860),
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we can say that A may lie within the threshold of B and B within the threshold of C.
POINCARÉ (1905) suggested “for the raw result of experience, A = B, B = C; A ≤ C which
may be regarded as the formula for the physical continuum. MENGER (1949) tried to solve
this problem from the positivist point of view. Following his words:

“Instead of distinguishing between a transitive mathematical and intransitive physical
relation, it thus seems more hopeful to retain the transitive relation in mathematics and to
introduce for the distinction of physical and psychological quantities a probability, that is,
a number lying between 0 and 1”.

He considered the role of probability in geometry and introduced the concept of
probabilistic metric as well as the concept of a set of hazy lumps instead of considering set
of points. Then the problem turns out to be similar to finding a probability of the
overlapping lumps. For more intuitive understanding, the lumps were considered as the
“seat” of elementary particles like electrons, protons etc. These lumps are taken as not to
be reducible to any other structures. In other words, they are the ultimate building blocks
of space and time. Therefore, a kind of granularity is introduced here at the very basic level.
Mathematically speaking, it can be stated as:

“for each pair of elements A and B of probabilistic geometry, it is possible to associate a
distribution function FAB(z) which can be interpreted as the probability that the distance
between the points is less than z”.

Essentially the relational aspect of geometry has been proposed and elaborated by
Menger. He replaced the usual metric function by a distribution function and showed that
this distribution function satisfies all the axioms of the metric. Hence it is known as
probabilistic metric space. There are various types of probabilistic metric spaces used in
different branches of physical science (SCHWEIZER and SKLAR, 1983; ROY, 1998). On a
large scale, taking averages over these distributions, one can get the usual metric structure.
Recently, MOGI (1997) tried to reinterpret Mach’s principle in the context of the response
selectivity of neurons. He proposed that in perception, the significance of firing of a neuron
is determined by the relation of the firing to other neurons at that very psychological
moment. He called it Mach’s principle in perception. According to his proposal, it is not
meaningful to talk about the firing of a single neuron in isolation and its significance in
perception.

In our approach, toward geometro-neurodynamics (ROY and KAFATOS, 2004), we
have considered the same relational aspect of geometry by considering the orientation
selectivity of neurons. Here, we consider the stochastic space as proposed by FREDERICK

(1976). In this model, the actual points of the space are stochastic in nature which can not
be used as either a basis for a coordinate system or to define a derivative. However, the
space of common experience at large scales or in the laboratory frame is non stochastic.
Therefore, we start from large scale non stochastic space and then continue to build up a
structure by applying it mathematically toward stochastic space i.e. toward small scales.
This stochasticity is considered to be manifested in a stochastic metric tensor gij and the
corresponding mass distribution determines not only the space geometry but also the space
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stochasticity. However, as more and more mass is confined in a region of space, the less
stochastic will be that space. Let us start with the relation between a covariant and
contravariant quantity, i.e.,

xi = gijxj.

As gij is stochastic, one obtains a distribution of the contravariant quantity xi instead of a
fixed quantity. Now, assuming a Lagrangian, taking this kind of stochastic metric, we
define a pair of conjugate variables, one covariant and another contravariant, as

P
L

qj j= ∂
∂ ˙

where Pj is a covariant quantity and is not observable in the laboratory due to its covariant
nature. The observable quantity is the contravariant one, i.e.,

Pj = gjν Pν.

As the metric tensor gij is of stochastic in nature, Pj is a random variable. So, if one member
of the conjugate pair is well defined, the other member will be random. This may play a
significant role in accounting for the tremor in motor behavior in neurophysiological
experiments.

4.5.  Neurophysiological basis for the stochasticity in the metric
Let us now look into the origin of stochasticity in neuromanifold. The

neurophysiological evidence shows that most neurons are spontaneously active, spiking at
random intervals in the absence of input. Different neuron types have different characteristic
spontaneous rates, ranging from a few spikes per second to about 50 spikes per second. The
mechanism of regular activity is well studied whereas the mechanism of random spontaneous
activity is not well understood. Several possibilities are discussed by LINDHAL and ARHEM

(1994).
One is the well known ion-channel hypothesis. According to this, the nerve impulses

are triggered by the opening of single ion channels where the ion channel gating is random.
Ion channels are membrane proteins through which the current causing the nerve impulse
passes. DONALD (1990) considered that the randomness may be related to quantum
fluctuations. LINDHAL and ARHEM (1994) suggested that single channels may cause
spontaneous activity in areas of the brain with consciousness. However, the detailed
mechanism of ion-channel gating is still not fully understood. GRANDPIERRE (1995) made
an attempt to study the effect of the fluctuation of the zero point field (ZPF) in the activity
of brain. As such, the future investigations on the effect of ZPF on the neurons may shed
new insight not only for the spontaneous activity of neurons but also on the actual process
of consciousness. We like to emphasize that in our picture, the fluctuation associated with
this kind of spontaneous activity of neurons is the physical cause behind the stochasticity
of the metric tensor.
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4.6.  Frederick’s approach to the stochastic metric
To start with, let us take FREDERICK’s (1976) version of stochasticity in geometry. He

made several interesting postulates as follows:

1. The metric probability postulate: P(x, t) = A −( )g , where for a one-particle

system P(x, t) is the particle probability distribution, A is a real valued function, and g is
the determinant of the metric.

2. The metric superposition postulate: If at a position of a particle the metric due
to a specific physical situation is gij

1 and the metric due to a different physical situation is
gij

2, then the metric at the position of the particle due to the presence of both of the physical
situations is gij

3 can be written as gij
3 = (1/2)[gij

1 + gij
2].

3. The metric ψ postulate: There exists a local complex diagonal coordinate
system in which a component of the metric is at the location of the particle described by the
wave function ψ.
We have started with Frederick’s approach not only for the attractive mathematical
framework for neuromanifold but also for the use of Mach’s principle as the guiding rule
for stochastic geometry. It then becomes possible to derive quantum mechanics by
adopting a strong version of Mach’s principle such that in the absence of mass, space
becomes non-flat and stochastic in nature. At this stage, the stochastic metric assumption
is sufficient to generate the spread of wave function in empty space. Following this
framework, one obtains an uncertainty product for contravariant position vector (q1) and
contravariant momentum vector (P1) as

∆q1∆P1 = ∆q1∆(Pνgν1)

where Pj = gjν Pν. Now the question is what is the minimum value of this product. It can
be shown that

∆q1∆(Pνmingν1) = ∆q1∆P1 > kmin

which is nothing but the uncertainty principle with k as the action quantity similar to h, i.e.,
Planck’s constant. Moreover, using the superposition postulate of the metric tensor, it is
also possible to account for the interference phenomena. But the problem is that it is not
properly understood at what level of the brain activities, the quantum effects will be
prevalent. The understanding of ion channel activity may provide the answer for the above
questions.

4.7.  Penrose and Hameroff approach: OrchOR model
It is to be noted that the above metric superposition postulate can be shown to be valid

under the weak approximation of the general theory of relativity. If there is more non-
linearity in the cortical surface, the superposition may actually break down. In Hameroff
and Penrose model, they considered a kind of superposition of space and time geometries
in order to relate it with the superposition of wave functions and the decoherence due to
variation of mass distribution and hence due to gravity effects. In the above framework, it
is possible to relate the superposition of wave functions using the superposition postulate
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of metrics. Because of the existence of different curvatures at different points (due to
different mass distributions) in the framework of statistical geometry, one can write the
superposition of metrics or geometries. But it is necessary to investigate the real
neurophysiological conditions under which the superposition of metrics would be a valid
approximation. It raises a new possibility of constructing a Hilbert structure over the
neuromanifold within the framework of statistical geometry. However, as we mentioned
earlier, construction of Hilbert structure over the neuromanifold is one of the prerequisites
before applying any kind of quantum mechanical process to the brain.

5.  Information Processing in the Brain

The information generated by integrated neural processes and its measurement has
created a lot of interests among the scientific community for the last few years. The measure
of information essentially depends on the basis of statistical foundation of information
theory (SHANNON, 1948). One of the intriguing question arises is how far the statistical
aspects of information theory can help one to assign a measure to differentiate the
informative character of the neural processes without any reference to an external observer.
The issue of the external observer has been debated in various branches of science and
philosophy over the last century since the birth of quantum mechanics. In fact, the issue of
measurement procedure in the history of science has been reanalyzed from time to time but
still under active considerations after the mathematical formulation of Von Neumann,
using the statistical concept of entropy. In the standard approach, one generally assigns a
number to measure the information and probability of the states of the system that are
distinguishable from the point of view of an external observer. But, the brain not only
processes the information, it also interprets the pattern of activities (PRIBRAM, 1991).
Therefore, one must avoid the concept of a privileged viewpoint of an external observer to
understand the information processing in the neural processes in the brain.

In our approach, we have developed a framework (ROY et al., 2003) where it is
possible to avoid the concept of an external observer by reanalyzing the very basis of
measurement procedure as well as the neurophysiological evidences in the standard
paradigm. EDELMAN et al. (2000) discussed this problem in the context of neurophysiology
and consciousness. The main problem is how to measure the differences within a system
like the brain? He defined a concept of mutual information for this purpose. There, the
authors considered the entropic measure to define the information as considered by
Shannon.

The principal idea lying behind our approach can be summarized as follows: The
concept of invariance plays a crucial role to understand the information processing and
measurement issues in the brain. In the brain, a matching occurs between an input pattern
and a pattern inherent in the synaptodentritic network by virtue of generic or learning
experience. In the Holonomic theory, both the input and output patterns provide the initial
conditions. The match between them is considered to be probabilistic in nature (PRIBRAM,
1991). We have introduced here a kind of invariance assisted by the context (as described
by the inherent patterns in the dendrites). This is quite similar to environment-assisted
invariance in Quantum Mechanics (ZUREK, 2000). It is one of the fundamental principles
of quantum mechanics known as quantum determinism where it is possible to show that an
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entangled state is formed between the input and output pattern. This state can be written in
terms of its basis vectors. Now, picking up the specific term from the expansion is generally
known as selection. REDHEAD (1989) emphasized that the selection of the parts is related
to the attention to a particular sub-ensemble of the whole. This means selection is not part
of quantum physics.

In physicist’s language, the selection signifies measurement that marks the end of
quantum physics. In contrast, the “yes-no”-experiment puts the selection process at the
beginning and makes the involvement of brain dynamics (or the selection that underlies the
pattern recognition in the brain) into the primitive of quantum mechanics. It may be
mentioned that “yes-no”-experiment depends primarily on the act of cognition. In this
framework it has been shown how the above kind of analysis and the concept of invariance
will help us to understand the nature of ignorance (for example to understand the
probabilistic nature of matching) and hence the origin of probability in the context of brain
function, similar to quantum physics, without using concepts like collapse or measurement
as commonly used in quantum mechanics. It is curious to note that EDELMAN et al. (2000)
pointed out that selection is biologically the more fundamental process. He conjectured that
there exist two fundamental ways of patterning thought: selectionism and logic. We think
that the selectionism plays a very significant role in understanding information processing
in brain.

6.  Conclusions

The above analysis clearly indicates that it is not understandable how the anatomy of
brain can permit the joint space-time representation in the sense of the special theory of
relativity. Therefore, the applicability of any kind of quantum field theoretic approach is
not realizable, at least, at the present stage of understanding of brain function. However,
it may be possible to define a smooth distance function and metric tensor in the probabilistic
sense. The probabilistic geometry seems to play a significant role in understanding Hilbert
space structure and its connection to non-relativistic quantum mechanics. This approach
sheds new light to understand the information processing and measurement procedure
related to the brain. The implication of stochastic geometry in the inner world might have
significant effects in the external world too, which will be considered in subsequent
publications.

One of the authors (S. Roy) greatly acknowledges Center for Earth Observing and Space
Research (CEOSR), School of Computational Sciences (SCS), George Mason University, Fairfax
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