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Abstract.  In this paper we propose a new set of constitutive equations for bone remodeling
that uses the specific surface instead of volume fraction. The theory of small-strain
adaptive elasticity proposed by COWIN and HEGEDUS and a surface remodeling equation
are derived to develop the remodeling theory. A relationship between net bone cell
activity, bone material property and mechanical stimuli is derived. For illustration, the
rate of change of trabecular remodeling is derived for selected geometries. With this
model, the effect of bone micro-structure and mechanical stimuli on the rate of remodeling
can be studied.

1.  Introduction

Bone is continuously remodeled through a coupled process of bone resorption and
bone formation, and this process is called bone remodeling. An early hypothesis about the
dependence of the structure and form of bones, and the mechanical loads they carry was
proposed by Galileo in 1638 (ASCENZI, 1993). The nature of this dependence was first
described in a semi-quantitative manner by WOLFF (1982), who stated that every change
in the form or function of a living bone is followed by adaptive changes in its internal
architecture and its external shape. The remodeling process is generally viewed as a
material response to functional demands that is governed by an intricate relationship
between bone apposition and resorption. It is accepted that bone growth, maintenance,
degeneration and remodeling are biochemically regulated processes influenced by
mechanical function.

Many theories, mostly phenomenological, have been proposed to explain the process
of bone remodeling (MARTIN, 1972, 1974; GJELSVIK, 1973a, b; COWIN and HEGEDUS,
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1976; HEGEDUS and COWIN, 1976; CARTER and HAYES, 1977; COWIN and VAN BUSKIRK,
1978, 1979; COWIN and FIROOZBAKHSH, 1981; FIROOZBAKHSH and COWIN, 1981a, b;
CARTER, 1987; CARTER et al., 1987, 1996; COWIN, 1987, 1993; HUISKES et al., 1987;
FIROOZBAKHSH and ALEYASSIN, 1989; HART and DAVY, 1989; BEAUPRE et al., 1990a, b;
FIROOZBAKHSH et al., 1992; WEINANS et al., 1992; MULLENDER et al., 1994; PRENDERGAST

and TAYLOR, 1994; MULLENDER and HUISKES, 1995; PRENDERGAST and HUISKES, 1996;
SIFFERT et al., 1996; HUISKES, 1997; JACOBS et al., 1997; SMITH et al., 1997; RAMTANI and
ZIDI, 2001). A widely accepted phenomenological model was proposed by COWIN and
HEGEDUS (1976) and HEGEDUS and COWIN (1976). In this paper, we will modify the COWIN

and HEGEDUS model by introducing a new variable, the so-called ‘free surface density’
instead of ‘volume fraction’ in the constitutive equations.

Two important features of the internal structure of bone are its porosity and specific
surface (MARTIN, 1984). Porosity is defined as the void volume per unit volume of the
whole bone or the fractional part of bone occupied by soft tissues. The specific surface is
defined as the internal surface area per unit volume of the whole bone (MARTIN, 1984).
Bone making cells (Osteoblasts) and resorbing cells (Osteoclasts) lie on the free surfaces
of bone, thus, all bone resorption and apposition is thought to occur at these sites (MARTIN,
1972, 1984; CARTER and BEAUPRE, 2001). Therefore, it seems appropriate to consider the
specific surface rather than volume fraction in the constitutive equations of bone remodeling.
Using the standard conservation equations and the entropy inequality, we propose a new
formulation for the remodeling process of bone in the small-strain regime, including the
effects of mechanical stimuli and bone micro-structural geometry.

It is well accepted that bone remodeling is a surface phenomenon, and from a cellular
point of view there is no difference between remodeling on different types of surfaces of
bones (MARTIN, 1972, 1984; CARTER and BEAUPRE, 2001). However, there is no theory
that includes surface and internal remodeling simultaneously.

Here, we derive a unique formulation for bone remodeling which can be used for both
surface and internal remodeling. In this model, bone geometry effects can be seen
explicitly. The surface remodeling equation proposed by COWIN and VAN BUSKIRK (1979)
is derived using this new model by considering some assumptions and restrictions.

2.  Fundamental Assumptions

In order to construct a general framework for the description of strain-induced bone
remodeling processes, we make the following assumptions: (1) the porosity of the bone
matrix depends on the ambient long-term mechanical stimuli (here, strain tensor) history,
(2) the transfer of mass, energy and entropy occurs as a result of biochemical reactions
between the bone actor cells (osteoblasts and osteoclasts) and the matrix, (3) the extra-
cellular fluid is in contact with the blood plasma that supplies the materials for the synthesis
of bone matrix, and (4) the characteristic time of chemical reactions for resorption and
apposition is several orders of magnitude greater (months) than the characteristic time
associated with a complete perfusion of the blood plasma in the bone. Therefore, any excess
heat generated by chemical reactions is quickly carried away by circulation and the
remodeling processes can be considered iso-thermal and quasi-static.



Free Surface Density Instead of Volume Fraction in the Bone Remodeling Equation 167

Mechanical stimuli that have been considered in bone remodeling include strain
(COWIN and HEGEDUS, 1976; HEGEDUS and COWIN, 1976), stress (KUMMER, 1972; WOLFF,
1982), effective stress (CARTER, 1987; BEAUPRE et al., 1990b), strain energy (HUISKES et
al., 1987) and strain rate (HART and DAVY, 1989). However, it is not known which of these
factors or combination of factors is the mechanical stimulus for bone remodeling. We will
consider strain as the basic mechanical signal for bone remodeling, because it represents
the immediate local effect of external bone loading, and it is a primary and directly
measurable quantity.

3.  Kinematics

The motion of material points is described in a Cartesian system of coordinates by xi
= xi(Xj, t) where xi(Xj, t) gives the location of the material particle Xj at time t, and where
i, j = 1, 2, 3 are indices for the three coordinate directions in the spatial and reference
configurations, respectively. The deformation function, xi = xi(Xj, t), is assumed to be one
to one, continuous, and invertible. The velocity field of the continuum at time t is given by:

V
x

ti
i= ∂

∂
( ). 1

The deformation gradient, Fij, the local volume change, J, and the velocity gradient, Lij, are
defined as:

F
x

Xij
i

j

= ∂
∂

( )2

J F= ( )det 3

and

L
V

Xij
i

j

= ∂
∂

( ). 4

Let υ denote the volume fraction of the solid phase (bone matrix) in the current configuration.
Then, the bulk density, ρ, of the porous structure in the current configuration is given by:

ρ = γυ (5)

where γ is the density of the bone matrix.
If ζ denotes the volume fraction of the matrix in an unstrained reference configuration,

then one might imagine a cube of porous elastic material with the eight vertices marked for
the purpose of measuring strain. When porosity changes, material is added or taken away
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from the pores, but if there is no deformation, the distance between the vertices of the cube
does not change. Therefore, ζ can change in the zero-strain reference state. Usually, the
Lagrangian description is used to describe the kinematics of solids. The undeformed (stress
free) configuration is used as the reference frame to describe the stress, the strain and to
formulate the equilibrium of the deformed configuration. But, as pointed out by SKALAK

et al. (1981) for volumetric growth problems, this classical approach must be modified, and
a current stress free configuration must be used as a reference (Fig. 1). Thus, three different
configurations are used: the initial stress free configuration (Ω0), the current stress free
configuration (Ω), and the actual configuration (Ωt). Now, one can find a relation between
ζ and υ:

ζ = Jυ. (6)

In other words, ζ and υ are the same, but are viewed from the effective free deformation
reference state and the current deformed state, respectively. Note that ζ may change
without changing the strain reference state if we assume that, at constant temperature and
zero body force, there exists a unique zero-strain reference state for all values of ζ (COWIN

and HEGEDUS, 1976). Thus, by combining Eqs. (5) and (6), the bulk density ρ of the porous
structure is given by:

ρ γζ= ( )
J

. 7

Fig. 1.  Lagrangian description for the remodeling problem.
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4.  Field Equations

The control volume for writing the conservation equations and entropy inequality is
the porous structure without the fluid. Conservation of mass for the porous structure can
be written as:

D

Dt
dv Cdvγυ∫∫∫ ∫∫∫= ( )8

where D/Dt is the material time derivative, C is the rate of apposition or resorption of bone
material per unit volume of bone, dv is an element of volume, and the domain of the
integrals is the porous matrix structure. Equation (8) can be rewritten in differential form
as:

γυ γυ˙ ,+ = ( )V Ck k 9

where Vk,k is equivalent to the divergence of the velocity vector.
Introducing Eq. (7) into Eq. (9), a new relation can be found:

ζ̇
γ

= ( )CJ
10

where, the dot (·) represents the material time derivative. Equation (10) is the conservation
of mass equation for the porous structure.

The conservation of momentum for the porous structure is:

D Dt V dv T n ds B dv P C dvi ij j i ii/ γυ γυ∫∫∫ ∫∫ ∫∫∫ ∫∫∫= + + +( ) ( )11

where Tij is the stress tensor, ni is the i-th element of unit normal vector, Bi is the body force,
and Pi is the force exerted by the fluid phase on the porous structure.

Conservation of energy for the porous structure is given by:

D Dt CV V dV

T n V q n dS b V r dV PV CV V C h dV

i i
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where, ε is the specific internal energy; r is the specific heat per unit time; q is the heat flux

vector, and h
∗

 is the energy transferred between the matrix and bone fluid (compensation
term).
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The entropy inequality for the porous structure is:

D Dt dv
r

dv
q n

dv
h

C dvi i/ γυη γυ
θ θ θ

η∫∫∫ ∫∫∫ ∫∫ ∫∫∫≥ − + +










 ( )

∗∗

13

where η is the specific entropy; θ is the absolute temperature and h
∗∗

 is the entropy
production term caused by the interaction between the matrix and the perfusant which is

not accounted for in other terms. We distinguish between h
∗

 and h
∗∗

 to indicate that not all
the energy transferred from the perfusant to the matrix needs to contribute to the entropy
production (COWIN and HEGEDUS, 1976).

By using the divergence theorem, Eqs. (11)–(13) can be rewritten as:

γυ γν˙
,V T b pi ij j i i= + + ( )14

γυε γν˙ ,= + − + ( )
∗

T L r q hij ij i i 15

γυη γυ
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˙
,
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 + ( )

∗∗
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i

16

where, i indicates the partial derivative with respect to x, y and z (or x1, x2 and x3) in the
Cartesian coordinate system.

The specific free energy (ψ) is given as:

ψ = ε – ηθ (17)

and

h h h= − ( )
∗ ∗∗

. 18

Then Eq. (16) can be converted to:

− − + − + ≥ ( )γυψ γυηθ
θ

θ˙ ˙
,T L q hij ij i i

1
0 19

Inequality (19) is a reduced form of the entropy inequality which is obtained by using the
energy field equation (Eq. (15)) to eliminate the radiation supply (r) from the entropy
inequality (Eq. (16)). Then by introducing the Helmohltz free energy (ψ), and Eq. (18), the
inequality (19) follows naturally.
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5.  Constitutive Assumptions

Bone can only be added or removed on the specific surfaces by osteoblasts and
osteoclasts, respectively (MARTIN, 1984). Thus, the rate of change of porosity (or the rate
of remodeling) is influenced by the amount of internal surface that is available for
physiologic activity. A bone whose specific surface is 5 mm2/mm3 has a greater potential
for remodeling than one whose specific surface is 1 mm2/mm3 (MARTIN, 1972, 1984).

The relation between volume fraction and free surface density depends on the pattern
of mass distribution in the bone. We can have two bones with equal porosity but different
specific surfaces (Fig. 2). For the same mechanical stimuli, the rate of remodeling is greater
for the bone with the greater specific surface. Roughly, the magnitude of the specific
surface is proportional to the potential for bone remodeling (MARTIN, 1972, 1984; RECKER,
1983; BRONNER and WORRELL, 1999).

Therefore, the important quantities in the constitutive equations for the specific free
energy, specific entropy, stress tensor, heat generation, enthalpy and the rate of remodeling
are the temperature, temperature gradient, specific surface and the deformation gradient.
Since bone remodeling is considered an iso-thermal process, we do not need the temperature
gradient in the essential assumptions.

The free surface density of bone is defined as:

S
S

Vv
b

t

= ( )20

where Sb is the total area of the solid phase which is in contact with soft tissue.
Assuming that only a portion of the free surface is active, we can define an effective

free surface as:

S
S

V
b

t
λ λ= ( )21

Fig. 2.  Samples of bone with identical porosity but different specific surfaces.
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where λ represents the ratio of the surface that is active for remodeling.
When considering the role of the free surface density in bone remodeling, we assume

that the specific free energy, specific entropy, stress tensor, heat generation, enthalpy, and
the rate of remodeling are functions of the temperature, temperature gradient, free surface
density, and the deformation gradient.

For example, for the specific free energy we can write:

ψ ψ θ θ λ= ( ) ( ), , , .,i ijS F 22

Taking the time derivative of the free energy function Eq. (22), substituting it into Eq. (19),
and making use of standard arguments (COLEMAN and CURTIN, 1967), we obtain the
following relations:

η ψ
θ

= − ∂
∂

( )23

T
J F

Fij
ik

jk= ∂
∂

( )γζ ψ
24

γυψ γυ ψ
θ

θ
λ

λ− ∂
∂

− + ≥ ( )
S

S q hi i
˙ .,

1
0 25

We assume that, for constant temperature and zero body force, there exists a unique zero-
strain reference state for all values of ζ which satisfies:

T Sij ikθ δλ0 0 0 26, , , .( ) = ( )

6.  Small-Strain Approximation

Strains in bone during everyday physiological activities are small (FRITTON et al.,
2000). Therefore, we can use a small strain approach for the remodeling of bone exposed
to physiological loads. In the small strain domain, ζ and F change to e and E, respectively
(HEGEDUS and COWIN, 1976) where:

e = ζ – ζ0 (27)

and ζ0 is the reference value for the volume fraction, and Eij is:

E U Uij i j j i= +( ) ( )1

2
28, ,
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where U is the displacement vector.
Using the above assumptions, we obtain:

C = C(Sλ, E) (29)

ψ = ψ(Sλ, E). (30)

Equation (10) can be rewritten as:

de

dt
S E= ( ) ( )Φ λ , 31

where:

Φ S E
C S E I E

λ
λ

γ
,

, det( ) = ( ) +( ) ( )
2

32

Φ(Sλ, E) and Ψ(Sλ, E) may be approximated by neglecting higher order terms in a Taylor
series expansion, thus:

Φ S E a S A S E B S E Eij ij ijkm ij kmλ λ λ λ,( ) ( ) + ( ) + ( ) ( )∗≅ 1

2
33
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a S Sλ λ( ) = ( ) ( )Φ , 0 34
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( )
=

2

0

36
Φ ,

.

Here a(Sλ), A*ij(Sλ), and Bijkm(Sλ) are the material properties of bone. Substituting Eq. (33)
into Eq. (31), and neglecting the third term in Eq. (33), we obtain:
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de

dt
a S A S Eij ij= ( ) + ( ){ } ( )λ λ

* . 37

Equation (37) describes the remodeling process. In order to find the required coefficients
for Eq. (37), a method of approximation is used:

de

dt
a a S a S A A S Eij ij ij= + + + +( ){ } ( )0 1 2

2 0 38λ λ λ

where Aij
0 and Aij can be defined as follows:
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λ

λ
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40

The following assumptions are made: (1) when Sλ is zero, de/dt must be zero. (2) when Eij
= Eij* then de/dt = 0; where Eij* is the strain state corresponding to the equilibrium state
as proposed by BEAUPRE et al. (1990a, b). The first assumption emphasizes that remodeling
can only occur in the presence of a free surface area. The second assumption implies that
when the mechanical stimuli lie in the lazy zone; there is no net remodeling. Applying these
assumptions to Eq. (38), the governing equation for the remodeling process becomes:

de

dt

dP

dt
A S E Ev

ij ij ij= − = −( ) ( )λ
* 41

where:

A
S E

S Eij
ij

ij
E

S

ij

=
∂ ( )
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( )
=

=2

0

0

42
Φ λ

λ

λ
,

.

Pv is the porosity fraction (e + Pv = 1).
Equation (41) defines the remodeling process of bone and it shows that the rate of

remodeling depends strongly on both the micro-structural pattern (factor Sλ) and mechanical
stimuli (Eij). The specific surface can be defined using mathematical relations for samples
of cortical bone. For cancellous bone, the specific surface can be determined experimentally
with micro-computed tomography (Micro-CT).
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In order to use this model, regions with nearly uniform bone mass distribution must
be identified, thus the specific surface in each region can be expressed uniquely. Then, the
mechanical stimuli (e.g. strain) distribution in each region must be determined. Finally,
once Aij is known, Eq. (41) can be used to derive the rate of remodeling for a sample of bone.

7.  Some Examples

Below, we will show some example applications of the current bone remodeling
theory.

7.1.  Surface remodeling equation
FROST (1964) divided bone remodeling into surface and internal remodeling. Surface

remodeling refers to the remodeling of bone on the external surfaces (Endosteal and
Periosteal surfaces). Internal remodeling refers to remodeling on the Haversian canals and
trabecular surfaces.

Surface remodeling has been assumed to be linearly proportional to the strain tensor
(COWIN and VAN BUSKIRK, 1979) for a hollow compact cylindrical bone:

dR

dt
C Q E Q E Qij ij ij= ( ) ( ) − ( )( ) ( )∗n, 43

where R is the radius of the endosteum or periosteum, Eij(Q) and Eij*(Q) are the Cartesian
components of the strain tensor at point Q and the reference value of the strain where no
remodeling occurs, respectively, and Cij(n, Q) are surface remodeling rate coefficients

Fig. 3.  Haversian Canal with an elliptic cross-section used for studying the geometry effect on the surface
remodeling equation.

2a

2b
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which are, in general, dependent upon the point Q and the normal vector, n, to the surface
at Q. Equation (43), can be found using Eq. (41) for the remodeling on the inner and outer
walls of a hollow cylindrical bone, only and only if we assume that there is remodeling
either on the outer or the inner surface. However, it is well accepted that there is remodeling
on both surfaces simultaneously, except possibly in the Haversian canals where there is
remodeling only in the Haversian canal. Remodeling equations for the Haversian canals
can be derived using Eq. (41) for different geometries of the canal. For example, for a
Haversian canal with an elliptic cross section (Fig. 3), the remodeling equation can be
found using Eq. (41) if we assume that the rate of remodeling is the same for all points of
the canal:

dr

dt
f a b C E Q E Qij ij ij= ( ) ( ) − ( )( ) ( )∗, 44

where:

f a b
b
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b
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b
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.
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a and b are minor and major radii of the elliptic cross-section, respectively (Fig. 3).
In Eq. (44), the effect of the cross-sectional geometry is captured in f(a, b). Surface

remodeling rate coefficients in Eq. (43) are negative of the corresponding ones in Eq. (41);
i.e., Cij = –Aij.

For example, the rate of bone remodeling for a Haversian canal with an elliptic cross-
section (e.g. a = 5b) (Fig. 3) is about 69% of that of a canal with a circular cross-section
(R = a).

Fig. 4.  A hypothetical shape of the micro-structure of a cancellous bone, all thicknesses = T.

a

a

L
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Comparing the percentage of the free surface of an elliptic and circular Haversian
canal 60% and 69%, respectively, with the experimental rate of remodeling shows good
agreement (RECKER, 1983; BRONNER and WORRELL, 1999). If the factor f(a, b) in front of
Eq. (44) is not considered for non-circular cross-sections, the effect of geometry on the rate
of remodeling can not be seen.

7.2.  Rate of change of trabecular bone thickness
For simple asymptotical geometries Figs. 4–6, one can derive the rate of change in

trabecular thickness (T) using Eq. (41). The geometries are chosen for the purpose of
illustrating the potential of the proposed model, and they are not meant to be realistic
representations of bone. For the sake of simplicity, the mechanical stimuli are assumed to
be uniform. The rate of change in thickness of each trabeculae in Figs. 4–6 is given by:

Fig. (4):

dT

dt
A E Eij ij ij= −( ) ( )* 46

Fig. 6.  A hypothetical shape of the micro-structure of a cancellous bone, all thicknesses = T.

Fig. 5.  A hypothetical shape of the micro-structure of a cancellous bone, all thicknesses = T.

a

a

L

L

a

a
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Fig. (5):

dT

dt
A E Eij ij ij= −( ) ( )4

3
47*

Fig. (6):

dT

dt
A E Eij ij ij= −( ) ( )2 48* .

Thus, by knowing the microstructure of bone, one can use Eq. (41) to analyze the
remodeling process.

7.3.  Cell activity (Martin’s) model
Martin proposed a model for bone remodeling based on bone cell activity (MARTIN,

1972):

de

dt
a a Sb b b c c c= −( ) ( )δ λ δ λ λ 49

where Sλ, ab, ac, λb, λc, δc and δb are the free surface density, osteoblast and osteoclast
activities, the fraction of Sλ occupied by osteoblasts and osteoclasts, and the osteoblast and
osteoclast densities, respectively.

Comparing Eqs. (41) and (49), the following relation is obtained:

a a A E Eb b b c c c ij ij ijδ λ δ λ−( ) = −( ) ( )* . 50

Equation (50) states that the net cell activity (rate of apposition – rate of resorption) is
linearly proportional to the mechanical stimuli (here, strain tensor).

MARTIN proposed an empirical formula that relates bone porosity and the effective
free surface density (MARTIN, 1984):

S P P P P Pv v v v vλ = − + − + ( )32 2 93 9 134 101 28 8 512 3 4 5. . . .

Assuming that Eq. (51) is valid for all bone samples and the entire free surface is active for
remodeling; Eq. (41) can be written as:

de

dt

dP

dt
A P P P P P E Ev

ij v v v v v ij ij= − = − + − +( ) −( ) ( )32 2 93 9 134 101 28 8 522 3 4 5. . . .*

Equation (52) can be solved for bone remodeling if Aij and the mechanical stimuli are
known.
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8.  Discussion

COWIN and HEGEDUS (1976), HEGEDUS and COWIN (1976) assumed that the specific
free energy (ψ), entropy (η), heat flux (qi), stress tensor (Tij), energy transferred between
matrix and fluid phase (h), and the rate of resorption and apposition (C) are functions of the
volume fraction, deformation gradient, and temperature for the isothermal process of bone
remodeling. However, experimental evidence suggests that resorption and apposition can
only take place on the free surfaces of bone (MARTIN, 1984). Thus, the rate of bone
remodeling is proportional to the specific surface area. Hence, we have replaced volume
fraction with the specific surface area in the constitutive equations. In other words, the
Helmholtz free energy, rate of resorption and/or apposition, enthalpy, entropy, stress
tensor, and heat flux vector were assumed to be functions of temperature, specific surface,
and deformation gradient. The novelty of our approach is that one can observe the effect
of bone geometry and mass distribution on the rate of remodeling (RECKER, 1983;
BRONNER and WORRELL, 1999). Using our model, a single equation (Eq. (41)) can be found
for surface and internal remodeling, thus the effects of mechanical stimuli and bone
geometry on bone remodeling, can be studied simultaneously. Using Eq. (41), the effects
of the geometry and the rate of remodeling of Haversian canals can be tackled. Geometric
feedback in the bone remodeling process, as proposed by MARTIN (1972), can also be
explored.

The specific surface area is always non-zero, thus, in accordance with Eq. (41), the rate
of remodeling is only zero when the mechanical stimuli are in the lazy zone (BEAUPRE et
al., 1990a). The rate of remodeling can be different for the same mechanical stimuli, same
volume fraction, but different mass distribution.

Considering the obvious effect of the specific surface on the bone remodeling equation
(Eq. (41)), we can conclude that two people with an equal average mass density, similar
shape of bones (macroscopically), similar mechanical stimuli, similar hormonal stimuli
and same form of nutrition can experience different rates of osteoporosis because of the
micro-structure of the bones. Thus, for evaluating risks for fracture in osteoporotic bones,
besides measuring the volume fraction (solid phase volume per total volume), the
microstructure of bone and the magnitude of the specific surface must be quantified.
Further research is needed to evaluate Eq. (41) and determine the rate of remodeling of
healthy and osteoporotic bone.

The authors would like to acknowledge the Canadian Institute of Health Research (CIHR), the
Canada Research Chair’s Programme and University of Calgary for their financial support.

NOMENCLATURE

x and X Coordinate in the spatial and reference configurations, respectively
t Time
Vi Velocity
Fij Deformation gradient
J Determinant of the deformation gradient tensor
Lij Velocity gradient tensor
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υ Volume fraction in the current configuration
ρ Apparent density of bone
γ Bulk density
ζ Volume fraction in unstrained reference state
Ω0 Initial stress free configuration of the body
Ω Current stress free configuration of the body
Ωt Actual configuration of the body at time t
D/Dt or •

Material time derivative
C Rate of resorption (or apposition)
dv Element of volume
Vk,k Divergence of the velocity vector
Tij Stress tensor
n Unit normal vector
Bi Body force
Pi Force exerted by the fluid phase on the porous structure
ε Specific internal energy
r Specific heat per unit volume
q Heat flux vector
h* Energy transferred between the bone matrix and bone fluid
η Specific entropy
θ Absolute temperature
h** Entropy production term caused by the interaction between the matrix and the perfusant
ψ Helmholtz free energy
Sv Free surface density
Sb Total area of interface between the solid and the porosity
Vt Total volume of bone
Sλ Active free surface density
λ Ratio of the surface that is active for remodeling
θ,i Gradient of absolute temperature
δij Kronecker delta
e Difference between the unstrained volume fraction at time t and before remodeling
ζo Unstrained volume fraction at t = 0 (before remodeling)
Eij Strain tensor
Eij* Strain at the remodeling equilibrium state
U Displacement vector
Ui,j Gradient of the displacement vector
I Identity tensor
a0, a1, a2, a(Sλ), Aij*(Sλ), Aij

0, Aij, Bijkm(Sλ)
Material constants of bone

Pv Void fraction
R Radius of Endosteum or Periosteum
Cij Surface remodeling rate coefficients
Q An arbitrary point on the bone surface
r Radius of endosteum on an elliptic cross section
a, b Minor and major radii of an ellipse
f(a, b) A function of a &b cause by the geometry of the cross section
T Thickness of trabeculae
ab, ac Osteoblast and osteoclast activity, respectively
δb, δc Fraction of Sλ occupied by osteoblast and osteoclast, respectively
Pv Porosity (void fraction)
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