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Abstract.  Some research has been conducted on applying coloration of painterly art to a
photographic image. Most of the proposed methods use some absolute criteria, e.g., the
nearest distance in CIE L*a*b* color space, converting a color to another uniquely.
However, we think that basic color transfer depends on the subjective feelings and
sensitivities of users themselves. We describe an algorithm where every user can produce
an original color-transformed image resulting from two inputs, which are a target
photograph and a reference painting. Our algorithm is based on interactive evolutionary
computation (IEC) and can produce a variety of color-transformed images semi-
automatically. Some color-transformed examples similar to reference paintings are
illustrated, and the searching efficiency of our method is discussed. Figures 1, 2, 3, 4, 13,
14 and 15 are originally made of color images. They can be seen in WEB version of
FORMA. URL is “http://www.scipress.org/jounals/forma/index.html.”

1.  Introduction

In the real world, each painterly artist renders a painting in his/her own style. This style
can be distinguished by elements, such as motif, color, shape deformation and texture.
Graphic researchers, however, have demonstrated many techniques to produce non-
photorealistic rendered images. An aim of non-photorealistic rendering (NPR), which is an
alternative to photorealism, is to produce painterly images that feature expression similar
to that used in actual painterly arts (GOOCH, 2001). Previously, some methods to paste the
texture of an painterly art on a photograph have been suggested (HERTZMANN, 2001;
WANG, 2004). Other methods for applying coloration of a painterly art to a photographic
image have also been suggested (REINHARD, 2001; CHANG, 2002). Altering colors of an
image is also one of the most common tasks in image processing, and it is the main interest
of our work.
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When you imagine a method for applying the colors of a given painting to a
photograph, you should consider the use of color space. Previous researches used lαβ and
CIE L*a*b* color space (REINHARD, 2001; CHANG, 2002). Both lαβ and CIE L*a*b* are
a kind of 3D color space representation. In lαβ color space, l-axis represents an achromatic
channel, while α and β channels are chromatic yellow-blue and red-green opponent
channels. In CIE L*a*b*, each axis of L, a and b represents similar channel as well as lαβ.
One method is based on simple statistical analysis in color space (REINHARD, 2001),
whereas the other is based on color categorization characteristics of human vision (CHANG,
2002). Although these methods have some differences in their approaches, they basically
aim at a similar goal.

Algorithms of applying colors of a given painting evaluate some distance in the colors
between a painting and a photograph in color space, and they acquire color pairs for the
color transformation uniquely. The uniqueness of transformation is indeed useful and

Fig. 1.  Target photograph Iin.

Fig. 2.  Reference painting Iref.
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effective in some cases. However, algorithms cannot always acquire results that satisfy a
user’s request, and it is difficult for him/her to estimate the results produced. We believe
that the process of detection of color pairs depends not only on the distance of colors but
also on other factors, such as the artistic subjectivity of the user.

In this paper we report on our attempt to transfer colors of a painting to a photograph,
where the subjectivity of each user was the only criterion for color assignment. The color
transfer processing exploits interactive evolutionary computation (IEC) (TOKUI, 2000;
TAKAGI, 2001; KATAGAMI, 2002) and finds color correspondences between a painting and
a photograph for altering the photograph’s color. In our algorithm, IEC is applied, whose
fitness function is provided by users. Users can repeat the operations to evaluate the output
re-colored images and assign some fitness values, which are either 1 or 0. IEC actually

Fig. 4.  Resulting image 2.

Fig. 3.  Resulting image 1.
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requires users to conduct a portion of the color-transfer operations themselves by showing
users a variety of candidate images. Thus, IEC does not perform all of the processing
automatically. In other words, it is semi-automatic.

Figure 3 illustrates an example of a color-transferred result by exploiting IEC method.
Figures 1 and 2 are a target photograph Iin and a reference painting Iref, respectively. IEC
color-transferred Fig. 1 into Fig. 3 based on coloration of Fig. 2. Figure 4 is also another
example of color-transferred result, however we had not exploited IEC to produce this
image. Instead of IEC, we calculated the Euclid distance in CIE L*a*b* color space and
applied the nearest neighboring color of the painting (Fig. 2) to the corresponding one of
the photograph (Fig. 1) in a similar way as was used previously (REINHARD, 2001; CHANG,
2002) as follows.

pout(x, y) = pref(i, j), (1)

where pout(x, y) is a pixel value of (x, y)-coordinate on an output color-transferred result,
and pref(i, j) is a pixel value of (i, j)-coordinate on a reference painting Iref. A pixel value
corresponds to a point in L*a*b* color space. pref(i, j) is calculated as follows:

p i j dist p x y p i j
p i j

ref in ref
ref

, arg min , , , ,
,

( ) = ( ) ( )( )( ) ( )
( )

2

where pin(x, y) is a pixel value of (x, y) on a target photograph Iin, and dist(pin(x, y), pref(i,
j)) represents Euclid distance in CIE L*a*b* color space as follows. The following Lin(x,
y), ain(x, y) and bin(x, y) are L, a and b value of pin(x, y) respectively. Then Lref(i, j), aref(i,
j) and bref(i, j) are L, a and b value on pref(i, j) respectively.

dist(pin(x, y), pref(i, j)) = dL + da + db, (3)

dL = (Lin(x, y) – Lref(i, j))
2,

da = (ain(x, y) – aref(i, j))
2, (4)

Fig. 5.  Color matching table.
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db = (bin(x, y) – bref(i, j))
2.

The viewer can see and confirm the visual difference between Figs. 3 and 4. We believe that
they feels much more similar coloration-look between Fig. 3 and Fig. 2 in comparison with
the one between Fig. 4 and Fig. 2.

In Secs. 2 and 3, we present the problems and solutions, where we exploit IEC for color
transfer. In Sec. 4, we present an overview of the algorithm, then in Sec. 5, we show some
output examples produced by our algorithm and evaluate the usefulness of the IEC
approach. Finally, we discuss some future directions for color transfer. Figures 1, 2, 3, 4,
13, 14 and 15 are originally made of color images. They can be seen in WEB version of
FORMA. URL is “http://www.scipress.org/jounals/forma/index.html.”

2.  Color Transfer

Color transfer is a kind of combinatorial optimization problem. Previous works on this
subject dealt with color transfer as a color-matching problem between a photograph and a
painting. An example of the color-matching problem is illustrated in Fig. 5. Cin(i) and
Cref(j) represent an i-th color of a target photograph Iin and a j-th color of a reference
painting Iref respectively. The circles in the table indicate assigning Cref(j) to the
corresponding Cin(i). The color-matching table is completed using some criteria, e.g., the
nearest distance in color space which is exploited to produce Fig. 4 as we have mentioned.

In this paper we attempt to use a new type of table, called a “region-matching table”
and denoted by Tr. To start, we divided each image into several regions, which indicate
place areas in a image, that is to say a set of all regions is equivalent to a whole image. The
regions in a target photograph Iin are represented as Rin(i) (i = 0, ..., Nin – 1) and the ones
in a reference painting Iref are represented as Rref(j) (j = 0, ..., Nref – 1). Then we decide a
pair (Rin(i), Rref(j)), and assigns a mean color, which is calculated in Eq. (5), to the
corresponding Rin(i). Figure 6 is an example of region-matching tables. The circles in the
table indicate assigning a color in Rref(j) to Rin(i).

Fig. 6.  Region matching table Tr.
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where nref(j) is a total of pixels in Rref(j).
The region-matching table Tr provides more solutions for the color-transfer problems

than the color-matching table. That is to say, even if the regions in Iin have same color, Tr
can assign different color to each region. Instead, it needs larger searching space, and of
course it will take more time to acquire the optimum solution. There is one further problem
that we could not ignore. It depends on IEC’s features. IEC produces color-transformed
images semi-automatically. A fitness function of IEC is provided by the users themselves,
and they have to repeat the operations to evaluate the color-transformed candidates until
they get the optimum result that satisfies them. The repeated operations force the users to
do a lot of work if the searching space is huge. Thus, we have to introduce a method to
reduce the number of times of making evaluation. Our approach is based on the intuitive
idea that painters roughly assign colors on a canvas first and when they draw and render a
painting they decide colors for finer regions.

On the basis of this idea, we first prepared coarse regions allowing us roughly to assign
colors to the regions. For acquiring coarse regions. we adopted k-means, which is a method
for image segmentation (TAKAGI, 1991). After that, we assigned fine colors to each region
based on a statistical analysis (REINHARD, 2001).

Once IEC finished rough color assignment, the matching pair (Rin(i), Rref(j)) was
decided. Fine color assignment was performed between Rin(i) and Rref(j). For this purpose
we wanted some aspects of the distribution of data points in L*a*b* space to transfer
between Rin(i) and Rref(j), where means and standard deviations along each of the three axes
were sufficient. Thus, we computed these measures for both Rin(i) and Rref(j).

Precise of process is as follows. In Eq. (6) each of Lin(x, y), ain(x, y) and bin(x, y)
represents a L*a*b* color member of (x, y) in Rin(i). Then each of 〈Lin(i)〉, 〈ain(i)〉 and
〈bin(i)〉 represents a mean of L*a*b* color member in Rin(i). We computed the means and
standard deviations for each axis separately in the L*a*b* space. First, we subtracted the
mean from the data at each point (x, y):

L′(x, y) = Lin(x, y) – 〈Lin(i)〉,

a′(x, y) = ain(x, y) – 〈ain(i)〉, (6)
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b′(x, y) = bin(x, y) – 〈bin(i)〉,

x, y ∈ Rin(i).

Then, we scaled the data points comprising the synthetic region by factors determined by
the respective standard deviations:
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where Lout(x, y), aout(x, y) and bout(x, y) represent a pixel value of (x, y) on a color-transferred
image Iout. σ*ref(j) and σ*in(i) (* ∈ {L, a, b}) are standard deviations in Rref(j) and Rin(i) for
each axis. After these transformations, the resulting data have standard deviations that
conform to Rref(j).

3.  IEC

3.1.  Encoding of a chromosome
IEC manages and completes a region-matching table Tr as shown in Fig. 6, where Nref

and Nin indicate the total number of Iref’s regions and that of Iin’s. When we consider the
problem for assigning Rref(j) (j = 0, ..., Nref – 1) to Rin(i) (i = 0, ..., Nin – 1) in the table Tr,

there are N
N

ref
in( )  total combinations. Our approach uses the table itself as a chromosome†

for IEC. The expression of a chromosome is as follows:

x x x

x N n N

N

n

0 1 1

0 1 0 1 8

, , ..., ,

   , ..., .

in

ref in

−[ ]
≤ ≤ − = −( ) ( )

The length of a chromosome will be NinlogNref bits, which is too long when the table is
large. To solve this problem, our approach divides the whole table Tr to K-small tables as

†“Chromosome” is usually a biological term and it indicates a string of DNA. In this paper “chromosome”
is a technical term of IEC and a chromosome indicates a solution to complete Tr and it is represented as a bit
string.
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shown in Fig. 7, if Nin, the total number of Iin’s regions, is beyond a threshold value. Tr
k

indicates a k-th small table (k = 0, ..., K – 1). Thus each Tr
k has (NinlogNref)/K bits as the

length of a chromosome. Then, a user evaluates and completes Tr
0, and repeats the same

operations for Tr
1, ..., Tr

K–1. This means that the user decomposes a whole path to a final
solution into K-subgoals. It is a kind of depth-first search shown in the search tree of Fig.
8, and users are allowed to evaluate and complete Tr

k only on k-th layer of the tree.
Furthermore, as part of preprocessing before beginning to search, we sorted the order

of regions in area order. The order of regions is given by

sump(Rin(i)) ≥ sump(Rin(i + 1)), (9)

where sump(Rin(i)) is the total number of pixels in Rin(i). Equation (9) determines the order
of the horizontal axis in the whole of region-matching table Tr. Thus, a user begins to
evaluate and complete a small table Tr

0 that occupies the largest areas in Iin, then treat
smaller tables Tr

1, ..., Tr
K–1. This sorting is also based on the intuitive idea that painters tend

to begin assigning colors to large areas first. We believe that area size is an important factor
for color assignment and that larger regions have some kind of higher visual impact.
Therefore, our approach mimics the painter’s drawing process in the real world.

Fig. 7.  Divided region-matching table.

Fig. 8.  Search tree to get final solution.



Color Transfer between Images with IEC 215

3.2.  Operations of GA
Operations of IEC we established are illustrated by the algorithm below which runs for

each Tr
k (k = 0, ..., K – 1). However in the following algorithm, we use K = 1 for simply

explanation.
1. [Start] Initialize the initial adaptive probability P0(i, j), which is calculated by Eq.

(10). P0(i, j) indicates the probability that Rref(j) is assigned to Rin(i) in the initial
generation. Generate a population† of M chromosomes, which is illustrated in Fig. 9, under
P0(i, j).

2. [Fitness] A user evaluates and gives the fitness value 0/1 of each chromosome in
the population.

3. [New population] Generate a new population by executing the following steps.
(i) [Selection] Select parent chromosomes whose fitness value is 1 from a

population, if there are more than two chromosomes whose fitness value is 1.
(ii) [Crossover] Cross over with the crossover probability the parents to form

new offsprings‡. The crossover probability decides whether executing crossover or not,
and in our system it is set to 0.5. Figure 10 illustrates crossover operation. When executing
crossover, a crossover point is settled at the locus between n and n + 1, which is selected
randomly. Offspring (a) and Offspring (b) are generated from the parent Chromosome (a)
and Chromosome (b).

(iii) [Mutation (1)] Generate new offsprings randomly under the adaptive
probability Pg(i, j), which indicates the probability in g-th generation and is defined in Eqs.
(10) and (11), except for the offsprings that the crossover formed.

Fig. 9.  Population.

Fig. 10.  Crossover.

†“Population”, which indicates a set of chromosomes, is a technical term of IEC.
‡“Offspring”, which indicates a chromosome in the next generation, is also a technical term of IEC.
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(iv) [Mutation (2)] Mutate all the new offspring at each locus randomly with the
mutation probability. The mutation probability is set to 0.025. Figure 11 illustrates
[Mutation (2)] operation. When the locus n is selected with the mutation probability, xn(a)
changes some random value yn(a).

(v) [Accepting] Place the new offsprings in a new population.
4. [Replace] Use a new generated population for a further run of the algorithm.
5. [Update] Update the adaptive probability Pg(i, j) for the next generation according

to Eq. (11).
6. [Test] Stop and return the best solution if a user finds a chromosome that satisfies

her subjective criteria in the current population.
7. [Loop] Go to step 2.
The definition of P0(i, j) is given below. It is based on the same idea that a larger area

could be some kind of higher visual impact.
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The adaptive probability Pg(i, j) in g-th generation, is assigned to Rref(j) for the Rin(i).
Pg+1(i, j), which indicates the (g+1)-th generation, is given by
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where ω is a coefficient in these equations to update the adaptive probability, and
determined as follows:

ω
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0

1 0

:  for fitness 1

:  for fitness 0

:  otherwise..

Fig. 11.  Mutation (2).
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The relation between ω1 and ω0 is given by ω1 > 1.0 > ω0 ≥ 0.0. For example, ω1 = 2.0 and
ω0 = 0.5 in our experiments. Thus, we notice the adaptive probabilities of the regions
included in a chromosome, which a user gave 1 as a fitness, increase in the next generation.
The higher the adaptive probability, the bigger the chance to be selected in [Mutation (1)].
On the other hand, the adaptive probabilities of the regions included in a chromosome,
which a user gave 0 as a fitness, decrease in the next generation. The history of user’s
evaluation is well reflected in the evolution process.

4.  System Overview

Figure 12 illustrates the system overview we developed. A user prepares two images
which are a target photograph Iin and a reference painting Iref. The system divides each
image into coarse regions by exploiting image segmentation. The regions acquired from Iin
and Iref constitute xy-axes of the region matching table Tr (see Fig. 6). The interface of IEC
is located between the users and Tr. The users evaluate and complete Tr through the
interface of IEC. Of course, they do not need to handle Tr directly. In the interface of IEC,
the users see and confirm the color-assigned images, which are candidates of the solution
the system has produced, and users just give fitness 0/1 to them. The system produces new
candidates based on the fitness, and users evaluate them again. Such processings are
repeated until a candidate satisfies their subjective criteria.

5.  Experimental Results

Our experiments applied color-transfer processing to 10 pairs of images, a target
photograph and a reference painting. Figures 13–15 show examples of our color-transfer
algorithm. Figure 13 shows target photographs, and Fig. 14 shows reference paintings.
Figure 15 shows examples of color-transformed image resulting from target photographs
of Fig. 13. The similarity between Figs. 14 and 15 can clearly be seen.

In the experiments, we required that users assign colors of reference paintings to target
photographs by using the IEC system under the condition that they arrange a similar look
and feel to the reference paintings. Color-transfer processing finished when an output

i
n
t
e
r
f
a
c
e

IEC

Region matching table
Tr

user

Iref

Iin

Fig. 12.  System overview.
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Fig. 13.  Target photographs.
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Fig. 14.  Reference paintings.



220 Q. Li et al.

Fig. 15.  Resulting images.
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Fig. 17.  Generations of IEC to get final satisfactory results (Fig. 15).

Fig. 16.  Processing time to get satisfactory results (Fig. 15).

result satisfied the user’s own subjective criteria. Five trials for each pair of images were
made, and five color-transformed resultings were acquired for each pair. The five results
might have a little visual differences although they were made using a same pair. Because
our system depends on user’s subjective criteria. This is one of our system’s features that
exploits IEC. Figures 16 and 17 show the mean processing time and the mean total
generations until the user was satisfied with each final result. Our system is operating on
a PC with 512 MB memory, a Celeron 2.40 GHz CPU, running the Sun Microsystem’s
Solaris 9 operating system.

As you see the targets and references for the experiments shown in Figs. 13 and 14,
you can notice that the compositions are comparatively simple. Thus, it would not be a
difficult task for a user to consider the combination needed to assign colors to a target
photograph. The generation shown in Fig. 17 might represent a user’s consideration time.
Figure 17 indicates that 8–32 generations are needed until an output result satisfies the
user’s own subjective criteria. The average is 18 to 19 generations. We think this is not so
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high as the conventional IEC system. However Fig. 16 indicates that it takes a considerable
time to acquire the final results. It must have been hard work for the users.

6.  Conclusion

In this paper we presented our attempts to represent a color transfer between a
photograph and a painting with IEC. We believe that we acquired the color transferred
images that have similar impression to the reference images shown in Figs. 14 and 15. The
system using IEC requires a user just to push the buttons of the system window on the
display monitor. Such easy operations can give 0/1 as fitness and evolve color transfered
images interactively. On the other hand, photo retouch tools, e.g. Adobe Photoshop, are
also available to operate colors interactively. However, users must learn and acquire high-
level skills, while in automatic color transfer it is difficult to reflect user’s subjective
criteria is difficult. The position of our method is in the middle between photo retouch tools
and automatic color transfer.

Some output examples were illustrated in the experiments, and we evaluated the
processing time shown in Fig. 16. The processing time largely depends on the specs of the
PC, but our system takes too much time for processing. The processing time is one of the
most important factors for IEC system because the faster the processing, the less the user
has to work. We have to resolve the problem immediately. In our research, we prepared
comparatively simple images in the experiments, and we did not need to divide into many
regions. If we succeed in shortening the processing time, we can handle more complex
ones. These problems are left for our future work.
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