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Abstract.  Three models of plant phyllotaxis are presented. Phyllotaxis is shown to be
governed by subtle properties of number which insure that the florets are arranged so as
to have the most space and therefore have the greatest access to sunlight. The mathematical
tools discussed are Farey series, Wythoff’s game, continued fractions, and a Fibonacci
number system called Zeckendorf notation.

1.  Introduction

Many scientists and keen observers of nature such as the architect Le Corbusier and
the composer Bela Bartok have observed the elaborate spiral patterns of stalks, or
parastiches, as they are called, on the surface of pine cones, sunflowers, pineapples, and
other plants. It was inevitable that the symmetry and order of plants so evident to the
observer and so evocative of sentiment to the artist and poet should become a source of
mathematical investigation.

ADLER (1997), a pioneer in modern theories of plant growth, or plant phyllotaxis as
it is called, has studied the history of this subject. Adler has traced the general observation
of the regular spacing of leaves as far back as Theophrastus (370 B.C.–285 B.C.) and Pliny
(25 A.D.–79 A.D.). Leonardo Da Vinci (1452–1519) observed the spiral patterns of plants,
while Johannes Kepler (1571–1630) conjectured that Fibonacci numbers were somehow
involved in the structure and growth of plants. Schimper (1836) observed that after some
number of complete turns around the stem of a plant, another leaf lies almost directly above
the first. He gave the name divergence angle to the number of turns divided by the number
of leaves in a cycle. The Bravais brothers (1937) first discovered that the angle between
successive stalks in the growth of a plant, the divergence angle, is in most plants 2π/τ2

radians or 137.5 degrees where τ = (1+ 5 )/2, is the golden mean.
The stalks or florets of a plant lie along two nearly orthogonal intersecting spirals, one

clockwise and the other counterclockwise. The numbers of counterclockwise and clockwise
spirals on the surface of the plants are generally successive numbers from the F-series: 1,
1, 2, 3, 5, 8, ..., and such growth is known as normal phyllotaxis. However, successive
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numbers from other Fibonacci sequences have been observed such as the Lucas sequence:
1, 3, 4, 7, 11, ..., with correspondingly different divergence angles referred to as abnormal
phyllotaxis. These successive numbers are called the phyllotaxis numbers of the plant. For
example, there are 55 clockwise and 89 counterclockwise spirals lying on the surface of
some sunflowers thus sunflowers are said to exhibit 55,89-phyllotaxis. On the other hand,
the plant shown in Fig. 1 has 5,8-phyllotaxis as does the pineapple (although since 13
counterclockwise spirals are also evident on the surface of a pineapple, it is sometimes
referred to as 5,8,13-phyllotaxis).

This article will explore the relationship between number and phyllotaxis. The infinite
Farey tree and continued fractions will be related to a hierarchy of phyllotaxis numbers.
Two equivalent models of plant growth introduced by COXETER (1953, 1961) and VAN

ITERSON (1907) will be described. Each model makes use of the fact that florets are
arranged so as to “have the most space.” Spacing properties of florets will be related to the
golden mean. A simplified model of phyllotaxis due to KAPPRAFF (2002) and KAPPRAFF

et al. (1997) will be described, showing the relationship of this subject to dynamical
systems on a torus.

To this day, the physical processes involved in phyllotaxis are a mystery. In this
chapter we ignore physical processes, and give only fleeting reference to the geometry of
plant growth, in order to underscore the number relationships that lie at the basis of this
subject.

2.  Coxeter’s Model

In Fig. 2, COXETER (1953) transforms the pineapple to a semi-infinite cylinder which
has been opened up to form a period strip (meaning that the left and right sides of the
rectangle are identified). Notice the three families of spirals. Also notice that the stalks are

Fig. 1.  A plant exhibiting 5,8-phyllotaxis.
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labeled chronologically, according to the order in which they appear in the growth process.
The center of each stalk makes up a lattice of points which are successively numbered along
another generative spiral. Each stalk is defined as the set of points nearer to that lattice
point than any of the other centers, what in mathematics is known as a Dirichlet domain (D-
Domain). In general, the Dirichlet domains of a lattice are hexagons, although at certain
critical points they become rectangles. Since the 5th, 8th, and 13th stalk (hexagon) border
the initial stalk (labeled 0), this diagram represents 5,8,13-phyllotaxis. In the most
prevalent form of phyllotaxis, the center of each stalk occurs at an angle λ = 2π/τ2 radians
or 137.5 degrees displaced from the preceding one where λ is the divergence angle. Other
forms of phyllotaxis have been observed with anomalous angles related to other noble
numbers as described Appendix A.

The lattice points also rise as if moving along a slightly inclined ramp by an amount
called the pitch. If the pitch is less steep, then larger numbered stalks will border the initial
stalk giving rise to larger phyllotaxis numbers. Notice that a sequence of stalks alternates
on either side of the initial stalk numbered by qk from the Fibonacci series. This is a
consequence of the properties of the convergents pk/qk

1/3, 2/5, 3/8, 5/13, ...

of the continued fraction expansion of 1/τ2 = 1/2 + 1/1 + 1/1 + 1/1 ... The convergents are
the rational numbers obtained by truncating the continued fraction at successive levels.
Appendix A gives a brief discussion of continued fractions. The next closest approach, the
qk-th point,  to the zero point occurs after the entire series has rotated pk times about the
cylinder. This is the result of the fact that the continued fraction expansions of 1/τ and 1/
τ2 have no intermediate convergents (see Appendix A). For example, in Fig. 2, the 13th
stalk occurs after 5 revolutions around the stem of the pineapple. Since pk/qk is the k-th
convergent to 1/τ2 in its continued fraction expansion, it follows (see KAPPRAFF, 2002) that
stalk qk occurs after pk revolutions about the cylinder, and

λqk – 2πpk ≈ 0  where λ = 2π/τ2. (1)

Fig. 2.  A pineapple transformed to a semi-infinite cylinder by H. S. M. Coxeter.
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3.  Van Iterson’s Model

Van Iterson’s cylindric model is similar to Coxeter’s model, however, it is easier to
analyze. VAN ITERSON (1907) and PRUSINKIEWICZ and LINDENMAYER (1990) uses tangent
circles to model the florets as shown in Fig. 3 for m,n-phyllotaxis. A clockwise spiral rises
from the origin in increments of m florets while a counterclockwise spiral rises in
increments of n florets, both spirals intersecting at the mn-th floret. Also floret numbers m
and n are both tangent to the initial floret labeled, 0. Fig. 4 illustrates this 2,3,5-, 3,5-, 3,5
8-, and 5,8-phyllotaxis.

Notice in Fig. 4a that for 2,3,5-phyllotaxis, floret number 2, 3, and 5 are tangent to the
initial floret, 0. As the floret diameter d decreases, the lattice undergoes a transformation
from one set of phyllotaxis numbers to another. As shown in Fig. 4, and on the phyllotaxis

Fig. 3.  An opposite parastichy triangle (as in ERICKSON (1983)). The base is formed by the circumference of
the cylinder. The sides are formed by the parastiches.

Fig. 4.  Patterns of tangent circles drawn on the surface of a cylinder as a function of circle diameter.
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(a)

(b)

Fig. 5.  (a) The vertical displacement h as a function of the divergence angle λ and for various phyllotatic patterns
(m, n); (b) A global picture showing the relationship between Farey sequences and divergence angles. Each
0 ≤ p/q ≤ 1/2 corresponds to an angle 360 × (p/q) degrees. Number pairs on the edges refer to phyllotaxis
numbers.

tree of Fig. 5, 2,3,5-phyllotaxis is a transition point at which the 2,3-branch of the
phyllotaxis tree bifurcates to 2,5-and 3,5-phyllotaxis. The divergence angles at general
transition points, m,n,m+n-phyllotaxis are shown in Fig. 5. At a transition point each circle
is tangent to six circles in a close-packed arrangement (see Figs. 4a and c). Also angle γ +
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β in Fig. 4 becomes 120 deg., and a third spiral becomes evident as shown in Figs. 4a and
c.

Van Iterson used his model to compute the pitch h, measured as the distance between
any two successive lattice points, the divergence angle λ, and the phyllotaxis numbers m,
n. He then determined the relationship between these quantities, illustrated by the phyllotaxis
tree in Fig. 5a. The positions of the vertices are slightly altered from Fig. 5b, derived from
the infinite Farey tree (see Appendix A) and located at angles equal to numbers from the
infinite Farey tree between 0 and 1/2 multiplied by 360 degrees, i.e., angles between 0 and
180 degrees. If m, n is interpreted as m/n, you will notice in Fig. 5a that the phyllotaxis
numbers are also arranged according to the Farey tree of Table 5b, but with the numbering
of its branches reordered. So we see that without the benefit of a geometric model, both the
hierarchy of phyllotaxis numbers and the values of the divergence angles are represented
by considerations of number only, as demonstrated by KAPPRAFF et al. (1997) and
KAPPRAFF (2002).

Figures 5a and b also show that any pair of phyllotaxis numbers is consistent with a
limited range of divergence angles, the angles between the transition points at both ends of
the appropriate branch of the phyllotaxis tree. For example, in Fig. 5a, 2,3-phyllotaxis is
consistent with angles between 128.5 deg. and 142.1 deg. or, correspondingly in Fig. 5b,
to angles between 120 deg. and 144 deg. Also the diameter of the floret circle d decreases
for higher phyllotaxis angles. Furthermore h and d at the bifurcation points can be uniquely
determined from the phyllotaxis numbers m, n by simple geometry as shown in
PRUSINKIEWICZ and LINDENMAYER (1990).

Any relatively prime pair of integers can serve as phyllotaxis numbers, and all such
possibilities are arranged in the Farey tree depicted in Figs. 5a and b. Each branch in Figure
5a corresponds to a pair of phyllotaxis angles gotten by zig-zagging left-right or right-left
down the tree from that branch according to the sequence LRLRLR ... or RLRLRL ... These
phyllotaxis angles correspond to the noble numbers described in Appendix A. Further
details are found in KAPPRAFF (2002) and MARZEC and KAPPRAFF (1983).

4.  Optimal Spacing

The question remains as to why divergence angles are related to the golden mean.
Wherever numbers or other quantities are to be evenly distributed in space, the golden mean
quite naturally makes its appearance (see Appendix B). The following spacing theorem
appears to lie at the basis of why the golden mean arises naturally in the growth of plants
and other biological systems.

Theorem 1:  Let x be any irrational number. When the points [x]f, [2x]f, [3x]f, ..., [nx]f are
placed on the line segment [0,1], the n + 1 resulting line segments have at most three
different lengths. Moreover, [(n+1)x]f will fall into one of the largest existing segments
([ ]f means “fractional part of”).

It turns out that segments of various lengths are created and destroyed in a first-in-
first-out manner. Of course some irrational numbers are better than others at spacing
intervals evenly. For example, an irrational number that is near 0 or 1 will start out with
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many small intervals and one large one. The two numbers 1/τ and 1/τ2 lead to the “most
uniformly distributed” sequence among all numbers between 0 and 1 as demonstrated by
MARZEC and KAPPRAFF (1983). These numbers section the largest interval into the golden
ratio 1:τ.

Theorem 1 is illustrated in Fig. 6a for a sequence of points [n/τ]f for n = 1 to 10. This
is equivalent to placing the points 2πn/τ2 (mod 2π), for n = 1 to 10, around the periphery
of a circle as shown in Fig. 6b.

Alternatively, consider the sequence for different values of n of [n/τ]f:

1 – 0.618, 2 – 0.236, 3 – 0.854, 4 – 0.472, 5 – 0.090, 6 – 0.708, 7 – 0.326, ...

Next, consider subsequences of 1, 2, 3, ... values of [n/τ]f and arrange them in order of
increasing fractional parts:

1
2 1 (since .236 then .618 is the ordering of fractional parts)
2 1 3 (since .236, .618, .854 is the ordering)
2 4 1 3 (since .236 .472 .618 .854 is the ordering)
5 2 4 1 3
5 2 4 1 6 3
5 2 7 4 1 6 3.

For each subsequence, as a consequence of the Theorem 1, the sum of the differences is a
maximum. For example if the integers 1, 2, 3, 4, 5 are arranged on the circumference of a
circle in the order 52413, the sum of their differences are 12 and is maximal for all
permutations of the integers from 1 to 5. KIMBERLING (A054065) has studied the
combinatorics of the sequence obtained by adjoining these subsequences in SLOANE. The
implications of this spacing property will be explored further in the next section.

If the center of mass of each stalk of a plant is projected onto the base of the period
rectangle in the case of Coxeter’s and Van Iterson’s models, then the next stalk divides the

Fig. 6.  The points [n/τ]f for n = 1, 2, 3, ..., 10 are evenly spaced on the unit interval; (b) the points 2πn/τ mod
2π are evenly spaced on the circumference of a circle.
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largest of the three intervals predicted by Theorem 1 in the golden section (1:τ). Any other
divergence angle would place stalks too near the directions of other stalks and therefore
make the stalks less than optimally spaced. However, the divergence angle 2π/τ2 leads to
the most uniformly distributed set of stalks. For example, the cross section of a celery plant
is illustrated in Fig. 7. The centers of mass of successive stalks are numbered. If the
positions of these centers are projected onto a circle, they are found to closely match the
points shown in Fig. 6b. We see that golden mean divergence angles ensure that successive
stalks are inserted at positions on the surface of the plant “where they have the most room.”

5.  The Gears of Life

In order to gain a clearer understanding of how a single number, the golden mean,
operates as a coordinator of space in the natural world, consider a very much simplified
mathematical model of plant phyllotaxis that nevertheless encompasses its essence. Figure
8a shows a number wheel with the numbers 1 through 5 placed on its rim. The numbers are
arranged clockwise every 72 deg., i.e., 360/5 degrees, beginning with 5 at the apex. Begin
at the number 3 and progress clockwise three spaces on the number wheel (or two spaces
counterclockwise) to reach 1, and three spaces again to 4, 2, 5, and ending the cycle at 3.
The sequence of moves is indicated by the star pentagon {5/3}. Notice that in order to
complete a cycle of the five vertices of the star requires a rotation twice around the circle.
So we have obtained Adamson’s Primary Phyllotaxis Sequence (PPS) KAPPRAFF (2002) in
the following order:

Floret number y:  3 1 4 2 5
Order number x:  1 2 3 4 5. (2)

The relationship of this wheel to Coxeter’s phyllotaxis model in Fig. 2 is revealed when the
floret number is graphed as the y coordinate and the order number as the x-coordinate as
shown in Fig. 8b with the floret number listed on the graph.

Figure 8b should be visualized as a square in which the bottom and top sides have been
identified (meaning that when a point passes through the top edge of the square, it enters

Fig. 7.  The cross section of a celery plant showing successive stalks evenly placed about the periphery.
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the bottom edge; top and bottom are considered to be identical) and the left and right sides
have been identified. In other words Fig. 8b represents a torus or rubber tire which has been
cut open into a period rectangle. On a torus one can trace two distinct cycles shown by the
two pairs of lines in Fig. 8b. If each interval on the x-axis corresponds to 360/5 = 72 degrees,
then successive floret numbers are counterclockwise from each other by an angle of (2/
5)360 = 144 deg., which is an approximation to the phyllotaxis angle of 137.5 deg. A
counterclockwise spiral making two turns on the surface of the torus is shown intersecting
florets (1, 3, 5) on the first turn and (2, 4) on the second. No consideration has been given
to the pitch of the spiral so that this diagram merely shows the relative ordering of the
florets, not their proximity to other florets as in Fig. 2.

The dynamics of this simplified model of plant phyllotaxis can also be represented by
a pair of gears which prompts me to use the metaphor, “gears of life.” One gear has two teeth
while the other has five. The gear with five teeth must have a diameter 5/2 times the one
with two teeth in order to accommodate the greater number of teeth. Five turns of the small
gear in a clockwise direction results in two turns of the large gear in a counterclockwise
direction. Musically, this is equivalent to two drums playing with a rhythm in which two
beats of one match five beats of the other. Another model which emphasizes this pair of
cycles is a torus in which a cycle of five turns in one direction around the torus is completed
simultaneous to two turns in the other direction.

The same dynamics which we have described for a wheel with five numbers can be
repeated for a gear with any Fibonacci number of teeth, for example the primary phyllotaxis
series for a gear with 34 teeth. Beginning on point 21 and progressing 13 spaces on the
number wheel, one obtains Sequence 3 for a gear with 34 spokes, the equivalent of
Sequence 2 for a gear with 5 spokes which also corresponds to the star polygon {34/21}:

Fig. 8.  (a) A number wheel with the numbers 1 through 5 on the rim. Beginning at 3 and progressing
counterclockwise successively 2 units results in Adamson’s Primary Phyllotaxis Sequence (PPS) graph for
five florets graphed on a period torus in (b).

(3)
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The divergence angle between successive florets in a counterclockwise direction is now
(13/34)360 = 137.54 degrees, which is an even closer approximation to the phyllotaxis
angle.

The PPS graph on a period torus is shown in Fig. 9 with a counterclockwise spiral
(solid line) making 13 turns on the surface of the torus and, on each successive turn,
intersecting points: (1, 14, 27), (6, 19, 32), ..., (4, 17, 30), (9, 22, 1). A second clockwise
spiral is shown approximating one that encircles the torus 8 times. The pair of spirals
comprise a schematic diagram of 8, 13-phyllotaxis.

Notice at the bottom of Fig. 9 can be found the same relative ordering of the points 1,
2, 3, 4, 5 that appears in Fig. 8. In a similar manner, the same relative ordering for the
diagrams corresponding to wheels with 3, 5, 8, 13, and 21 numbers can be found in Fig. 9.
This self-similarity, inherent in the growth process, is a manifestation of the self-similarity
inherent in the golden mean. A corresponding wheel unrelated to the golden mean would
result in an entirely different PPS diagram for each new wheel. So long as 2π/τ2 lies in the
interval, [pk/qk, pk–1/qk–1] or [pk–1/qk–1, pk/qk], then the stalks corresponding to the gear with
qk spokes will have the same qualitative ordering. This is an example of a phenomenon
called mode locking described by KAPPRAFF (2002).

Other interesting properties of the PPS sequence are:
i. The first 21 numbers of this sequence correspond to [nτ] while the last 13 numbers

correspond to [nτ2] the two classes of Wythoff pairs (see Appendix C), where [x] signifies
“the integer part of x.”

ii. Proceeding from left to right, notice that the running high (H) and low (L) values
of the floret numbers occur at order numbers corresponding to the Fibonacci numbers. This
is a consequence of the property that the continued fraction expansion of the golden mean
has no intermediate convergents (see Appendix A) .

Fig. 9.  The PPS graph on a period torus for 34 florets. The line drawn through the figure divides Zeckendorf
code representation of floret number ending with 1 from those ending with 0.
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iii. If the floret numbers are written in Zeckendorf notation (see Appendix D), all of
the [nτ] end in 1 while the [nτ2] end in 0, a fact that was also illustrated by Adamson’s
Wythoff Wheel of Fig. C1. For that matter, notice that identical sequences of digits in
Zeckendorf notation are grouped together, another manifestation of self-similarity.

iv. The rabbit sequence (see Appendix D): 101101011011 ... is replicated by the last
digit of the Zeckendorf notation of the sequence: 1, 2, 3, 4, ... KAPPRAFF (2002) has shown
that this sequence is indicative of chaos KAPPRAFF (2002). The rabbit sequence was also
described by Kauffman in another article in this issue.

v. The PPS sequence corresponds to a situation in which the positions of all 34
florets are projected onto the x-axis. The differences between adjacent floret numbers of
this series are 13 21 13 13 21 13 ..., equivalent to the rabbit Sequence.

The relationship between the numbers of the PPS series is summarized on Adamson’s
Primary Phyllotaxis Wheel shown in Fig. 10. Here the numbers are arranged around a
circle.

The properties of this wheel are:
i. The distribution of numbers around each circle is the most equitable. In fact, the

wheel is a discrete replica of the distribution of the numbers 2πn/τ2 around the circle in Fig.
6b.

ii. The Fibonacci numbers descend the central radial line, alternating on either side
of it, just as in the phyllotaxis lattice (see Fig. 2). Notice how each Fibonacci number
originating in the outer circle descends to meet this central Fibonacci series.

iii. Each circle contains the numbers of a PPS sequence alternating clockwise and
clockwise, e.g. clockwise for 34-PPS and counterclockwise for 21-PPS, etc.

Fig. 10.  Adamson’s Primary Phyllotaxis Wheel.
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iv. The depth of the lines radiating towards the center of the concentric circles
follows the sequence of the Fibonacci counterpart of the Towers of Hanoi Sequence
described in Appendix 3D.

The phyllotaxis diagram in Fig. 2 is the result of considering an infinite number of PPS
series. The major difference between this figure and the discrete version of phyllotaxis is
that the phyllotaxis spirals are not periodic. Instead of a single spiral that encircles the torus
with Fn turns, we now have Fn distinct spirals that encircle the torus but do not close up.
The spirals are quasi-periodic. It can be shown that plant phyllotaxis is an example of chaos
in the spatial rather than the time dimension KAPPRAFF (2002).

6.  Conclusion

Plant phyllotaxis has been studied for more than one hundred years. It has stimulated
research in biochemistry, botany, horticulture, and mathematics. It appears that plants
apportion space so that each stalk has equal access to light and other resources. In order to
accomplish this task, plants exhibit an elaborate numerology.

Without the hint of a physical mechanism, or even the artifice of a geometric model,
the essentials of the growth process are still manifested through the infinite Farey tree and
continued fractions, Wythoff’s game as depicted in Adamson’s wheels, and the symbolic
dynamics of the rabbit tree and series. Without even the concept of pitch or divergence
angle, the Farey sequence reveals the relationship between these quantities in remarkable
detail, and it even permits us to compute all possible divergence angles observed on actual
plants. Without the concept of a lattice of florets, the primary phyllotaxis system (PPS)
reveals the ordering of florets into spiral arrangements. We are led into a Platonic mode of
thought in which the concepts of number, existing entirely within the mind, can be seen in
the plant world.

Decoupling phyllotaxis from science and geometry suggests that this number-theoretical
structure is universal and manifests itself in other biological processes and dynamical
systems (see KAPPRAFF et al., 1997) For this reason, I have given the PPS the name “gears
of life.” Can a relationship between phyllotaxis and other biological processes be
demonstrated?

This article was edited and reprinted from Beyond Measure: A Guided Tour through Nature,
Myth, and Number by Jay Kappraff. It appeared in the Knots and Everything Series, ed. Louis H.
Kauffman published by World Scientific (2002).

Appendix A.  Continued Fractions and the Infinite Farey Tree

Any positive real number can be expressed as a continued fraction of the form,

  

α = +
+

+

= [ ] = + + + +a
a

a

a a a a a a a a ak0

1

2

0 1 2 3 0 1 2 3
1

1
1

1 1 1 1

.

; / / / /K K K



Growth in Plants: A Study in Number 347

where the indices a0, a1, a2, a3 ... are positive integers and the latter expression is a
shorthand for the continued fraction. If α is a number between 0 and 1 then the leading
integer can be eliminated.

Consider a real number 0 < α < 1 expressible as a continued fraction. The convergents,
obtained by truncating the continued fraction at the k-th position, are given by pj/qj for j =
1, 2, 3, ..., k, i.e.,
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The latter expression defines the modulus, M, of the pair of rationals, pk–1/qk–1 and pk/qk.
We can see that for any pair of consecutive convergents, M = ±1. Applying this to 17/47
= [2,1,3,4] one gets the following sequence of convergents:

2 1 3 4

1 2 1 3 4 11 17 47/ / / / .
A2( )

Notice that the modulus between any pair of convergents is M = ±1.
Given a pair of positive rational numbers, a/b and c/d, the fraction (a+c)/(b+d) lies

between them. Therefore corresponding to a pair of successive convergents, pk–2/qk–2 and
pk–1/qk–1 there exists a sequence of rational numbers called intermediate fractions defined
by,
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It follows when ak = 1, there are no intermediate convergents between pk–2/qk–2 and pk–1/
qk–1.
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Starting with 0/1 and 1/1, all of the rational numbers in a natural hierarchy can be listed
in what is known as an infinite Farey tree. For example the next number in the hierarchy
is formed by “adding” the pair of adjacent rationals in a way forbidden to children;
numerators are added and the denominators are added. For example,
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The result is always a rational number that lies between the original pair of rationals.
Continuing in this manner, the infinite Farey tree is shown in Fig. A1. Notice the zig-
zagging sequence of rationals with numerators and denominators from the Fibonacci
sequence: 0/1, 1/2, 1/3, 2/5, 3/8, 5/13, ... These are the convergents of the continued fraction
expansion of 1/τ2 where 2π/τ2 = 137.5 deg. is the principal divergence angle. The fact that
they zig-zag along successive rows of the Farey tree signifies that the indices of their
continued fraction expansion ends in a sequence of 1’s,

  
1 2 1 1 2 1 1 1 1 12/ , / / /τ = [ ] = + + + K

where the superscripted bar refers to a periodic sequence of indices. Successive convergents,
again, have M = ±1.

The next most prevalent divergence angle found in phyllotaxis is given by the
continued fraction: [3, 1 ] with the sequence of convergents: 0/1, 1/3, 1/4, 2/7, 3/11, ... Note
that the numerators follow a Fibonacci sequence while the denominators follow a Lucas
sequence. These fractions approach (0+1τ)/(1+3τ) along another zig-zag path, corresponding
to the most prevalent divergence angle, 99.5 deg, of abnormal phyllotaxis.

KAPPRAFF (2002) has shown that the Farey tree is a graphical representation of the
entire structure of all continued fractions. Beginning with 0/1 in the first row and 1/1 in the
second row, the sequence of indices of the continued fraction describes how many rows in
the Farey tree to descend in a RLRLRL ... zig-zag sequence to find the next convergent

Fig. A1.  The infinite Farey tree.
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which is always the nearest rational to the preceding one, in that row. For example,
referring to Sequence (A2) leading to the continued fraction expansion of 17/47= [2134],
the first convergent, 1/2, is found two rows beneath 0/1 and the right (R); 1/3 is one row
below 1/2 and to the left (L); 4/11 is three rows beneath 1/3 and the right (R); ending with
17/47 four rows beneath 4/11 and to the left (L).

The class of divergence angles found in phyllotaxis are characterized by continued
fractions whose convergents, after some point, zig-zag row by row. I have called the angles
corresponding to these continued fractions, noble angles. They are characterized by the
continued fractions of (p0+p1τ)/(q0+q1τ) where p0/q0 and p1/q1 are the first two convergents
of the continued fraction before the indices become 1’s.

Figure 5b shows the left half of the Farey tree with the noble angles to which various
sequences of phyllotaxis convergents approach. The rational fractions p/q correspond to
the phyllotaxis numbers p, q.

Appendix B.  The Golden Mean and Optimal Spacing

The ability of τ to evenly distribute numbers can be seen by observing the first 103
decimal places of Adamson’s Golden Ratio Phyllotaxis Constant (GRPC):

.6284073951740628517395284063951730628417395184062951739
6284073951740628417395284062951730628407395184406 ...

A first glance might lead you to believe that the sequence .6284073951740 ... is repetitious,
but a closer examination of the number reveals a long-term, non-periodic structure with
only local repetitions. Exhibiting the digits as follows reveals interesting Fibonacci
properties:

Lengths of sequences beginning with “6”:

13 units Golden Ratio Phyllotaxis
13 Constant arranged in “6”
8 columns
13
8 Data at left - shows that up to
13 the first 103 digits, the GRPC
13 number can be grouped by
8 Fibonacci number of sequences
13 beginning with 6.

This series follows the pattern of the rabbit sequence (see Appendix D). As you can easily
discover, a similar situation exists for each digit.

How is GRPC computed? To some extent it is analogous to Wythoff’s game (see
Appendix C), except that the decimal part of multiples of 1/τ and 1/τ2 are extracted instead
of the integer parts. Multiply 1/τ = 0.618 ... successively by the integers, discard the integer
part and extract the first number after the decimal point. This yields the GRPC. For
example, 12/τ = 7.416 ... Therefore the 12th number in GRPC is 4. The complement of
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GRPC, 0.3715926048, is generated by multiples of 1/τ2, and GRPC and its complement
sum to 1.000 ... just as 1/τ and 1/τ2 do. Some properties of GRPC are:

1. Differences between each digit are maximized: 4, 6, 4, 4, 4, 7, 4, 6 ...
2. The number is transcendental and has long-range aperiodicity.
3. It is easy to calculate any digit (unlike pi).
4. It has a long range equitable distribution and frequency of each digit 0 through

9: First 103 digits of the GRPC have 11-0’s, 10-1’s, 10-2’s, 10-3’s, 11-4’s, 10-5’s, 10-6’s,
11-7’s, 10-8’s and 10-9’s.

Appendix C.  Wythoff’s Game

My own interest in the fascinating world of Fibonacci numbers began as the result of
playing Wythoff’s game with my students at the New Jersey Institute of Technology
KAPPRAFF (1986). This game is played as follows:

Begin with two stacks of tokens (pennies). A proper move is to remove any
number of tokens from one stack or an equal number from both stacks. The winner
is the person removing the last token.

The winning strategy is based on Theorem C1 due to S. Beatty.

Theorem C1:  If 1/x + 1/y = 1, where x and y are irrational numbers, the sequences [x], [2x],
[3x], ... and [y], [2y], [3y], ... together include every positive integer taken once ([ ] means
“integer part of”, e.g., [3.14] = 3).

For a proof, see COXETER (1953). Since 1/τ2 + 1/τ = 1, Beatty’s theorem shows that
[nτ], [nτ2] exhausts all of the natural numbers with no repetitions, as n takes on the values
n = 1, 2, ... Table C1 shows results for n = 1, 2, ..., 6. Do you notice a pattern in these number
pairs that enables you to continue the table without computation? These Beatty pairs are
also winning combinations for Wythoff’s game. At any move a player can reduce the
number of counters in each stack to one of the pairs of numbers in Table C1. The player who
does this at each turn is assured victory.

This sequence follows a rather subtle pattern. The differences between the numbers in
each column are:

Table C1.  Winning combination of Wythoff’s game.

n [nτ] [nτ2]

1 1 2
2 3 5
3 4 7
4 6 10
5 8 13
6 9 15
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2 1 2 2 1 2 ...   and   3 2 3 3 2 3 ...

Although both of these sequences follow a similar pattern (with 2 and 1 replaced by 1 and
0, respectively, in the first sequence, and 3 and 2 replaced by 1 and 0 in the second
sequence):

101101011011011 ... (C1)

This is the so-called rabbit sequence because it relates to the famous problem posed by
Fibonacci concerning the propagation of rabbits. This sequence is discussed in Appendix
D. Adamson’s Wythoff Wheel is shown in Fig. C1. The Wythoff pairs are placed in
adjacent cells with the left hand column of integers labeled with 1’s and the right hand
column with 0’s. Notice that the rabbit sequence is developed by the sequence of 0’s and
1’s in each concentric circle.

Appendix D.  Zeckendorf Notation and the Rabbit Sequence

Figure D1 shows a tree graph depicting the growth of rabbits described by Fibonacci
in his book Liber Abac: (1209).

Each month a mature pair of rabbits gives birth to a pair of rabbits of opposite sex.
However, a newborn rabbit pair must wait two months before it matures.

The branches in Fig. D1 are labeled in Fig. D2 in such a way that the branches representing
the mature rabbits are labeled with a 1, while young rabbit branches get a 0.

This numbering system is a way to represent all the integers in a golden mean decimal
system known as Zeckendorf notation. The elements of the Fibonacci tree are numbered in
Zeckendorf notation beginning with the root labeled by a 1. Beginning with the root, follow

Fig. C1.  Adamson’s Wythoff Wheel. Adjacent number pairs are safe combinations for Wythoff’s game.
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the unique path to any element of the tree. The Zeckendorf representation of that number
is given by the string of 0’s and 1’s along that unique path. For example, the number 13 is
represented in this system by:

13 = 10110.

If each digit from right to left is weighted respectively according to the F-sequence, i.e.,
1, 2, 3, 5, 8, 13, ..., and the Fibonacci numbers corresponding to the digits represented by
1’s are added, the numbers on the branches of the Fibonacci tree are the succession of

Table D1.  Binary and Fibonacci representations of number.

Fig. D1.  The branches of the Fibonacci tree are labeled with a 1 for mature rabbits and 0 for young rabbits. This
tree is the basis of a Fibonacci number system (Zeckendorf notation).

168421 85321

0 0 0 0
1 1 1 1 1 1
2 10 2 10 2 2
3 11 1 11 1 3
4 100 3 101 3 4
5 101 1 110 2 5
6 110 2 111 1 6
7 111 1 1010 4 7
8 1000 4 1011 1 8
9 1001 1 1101 3 9

10 1010 2 1110 2 10
11 1011 1 1111 1 11
12 1100 3 10101 5 12
13 1101 1 10110 2 13
14 1110 2 10111 1 14
15 1111 1 11010 4 15
16 10000 5 11011 1 16
17 10001 1 11101 3 17
18 10010 2 11110 2 18
19 10011 1 11111 1 19
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integers, e.g., 101 = 3 + 1 = 4, 110 = 3 + 2 = 5, 111 = 3 + 2 + 1 = 6, 1010 = 5 + 2 = 7, 11010
= 2 + 5 + 8 = 15 ... The integers from 1 to 19 are listed in Table D1, along with their binary
representations.

Notice the sequence that makes up the last digit or 1’s column. It is the rabbit sequence:

101101011011011 ... (D1)

This is the same sequence that we encountered in each column of Wythoff’s sequence (see
Appendix C) given by Sequence (C1). This pattern of numbers also makes up the 2’s
column except that in place of a 1, two 1’s appear. The pattern also appears in the 3’s
column with three 1’s replacing each 1 and two 0’s in place of each 0; in the 5’s column,
five 1’s replace each 1 while three 0’s replace each 0.

The rabbit sequence is generated by beginning with 1 and successively replacing 1 →
10 and 0 → 1 to yield the sequence: 1, 10, 101, 10110, 10110101, 1011010110110, etc.
Notice in this sequence that up to position Fn, the n-th Fibonacci number, in the sequence
there are Fn–1 1’s and Fn–2 0’s where F1 = 1, F2 = 1, F3 = 2, F4 = 3, F5 = 5, F6 = 8, ... For
example up to the 5th position there are three 1’s and two 0’s. KAPPRAFF (2002) has shown
that this sequence provides the symbolic dynamics of a dynamical system known as the
circle map at the brink of chaos.

The numbers in Table 1D to the right of the binary and Zeckendorf notation represent
the digit numbered from the right in which a 0 changes to a 1 between successive integers.
They form two sequences,

TOH Sequence: 1213121412131215121 ... (D2)

TOH-Fibonacci Sequence: 1213214132152141321 ... (D3)

Sequence (D2) is the sequence of moves for the well-known Tower of Hanoi puzzle (TOH)
described with great detail in KAPPRAFF (2002). Series 3D is the analogous sequence for
the Fibonacci system. These sequences are full of number patterns. For example, the 1’s
from the binary sequence follow each other after every 2 spaces. In other words it is
periodic. In the rabbit sequence the 1’s follow each other according to the sequence 232332
..., which is the rabbit sequence if 2 is replaced by 0 and 3 is replaced by 1. While the
Sequence (D2) is periodic in each of its digits, Sequence (D3) is almost periodic, or
quasiperiodic as mathematicians say. You can check the comparable patterns within both
sequences for the numbers 2, 3, 4, 5.

It is interesting to note that the sequence of moduli between successive rationals in
each row of the infinite Farey tree in Fig. A1 follows the pattern: 3, 353, 3537353,
353735393537353, ... If 3, 5, 7, 9, ... is replaced by 1, 2, 3, 4, ...the TOH sequence is
developed as shown in Sequence (D2).
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