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Abstract.  The diagonals of regular n-gons for odd n are shown to form algebraic fields
with the diagonals serving as the basis vectors. The diagonals are determined as the ratio
of successive terms of generalized Fibonacci sequences. The sequences are determined
from a family of triangular matrices with elements either 0 or 1. The eigenvalues of these
matrices are ratios of the diagonals of the n-gons, and the matrices are part of a larger
family of matrices that form periodic trajectories when operated on by a matrix form of
the Mandelbrot operator at a point of full-blown chaos. Generalized Mandelbrot matrix
operators related to Lucas polynomials have similar periodic properties.

1.  Introduction

It is well known that the ratio of successive terms of the Fibonacci sequence
approaches the golden mean, τ = (1+ 5 )/2, in the limit and that the diagonal of a regular
pentagon with unit edge has length τ. We show that the Fibonacci sequence can be
generalized to characterizing all of the diagonals of regular n-gons for n an odd integer.
Furthermore, a geometric sequence in τ is also a Fibonacci sequence and shares all of the
algebraic properties inherent in the integer Fibonacci sequence. Similar sequences involving
the diagonals of higher order n-gons also have algebraic properties. In fact we shall show
that the diagonals form the bias vectors of a field. We shall call these, as STEINBACH (1997)
did, “golden fields”. Products and quotients of the diagonals of an n-gon can be expressed
as a linear combination of the diagonals.

The results depend strongly on a set of polynomials related to the Fibonacci numbers,
and the Lucas polynomials, both of which are related to the Chebyshev polynomials. All
of the roots of the Fibonacci polynomials are of the form x = 2cos(kπ/n) while the Lucas
polynomials map 2cosA   a  2cosmA. As a result, we show that a family of matrices with
0, 1, –1 elements form periodic trajectories when operated on by matrix forms of the Lucas
polynomials. We refer to these as Mandelbrot Matrix Operators since the Lucas polynomial
L2(x) corresponds to the Mandelbrot operator at the extreme left hand point on the real axis,
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a point of full-blown chaos. KAPPRAFF and ADAMSON (2005) have shown in a previous
paper that the higher order Lucas equations lead to generalized Mandelbrot sets.

2.  Preliminaries

Our work is based on the Diagonal Product Formula (DPF) of STEINBACH (1997).

Proposition: Diagonal Product Formula:
Consider a regular n-gon (Fig. 1) for odd n and let ρ0 be the length of a side and ρk the

length of the k-th diagonal with k = (n–3)/2. Then
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In what follows we shall let ρ0 = 1.
Using a chain of substitutions in the DPF, STEINBACH (1997) derived for the regular

n-gon, the following formula basic to the combinatorics of polygons,

  C k x C k x C k x C k x k xk k k k k, , , , ,0 1 1 2 2 1 0 2 1 22 4 1 3( ) − −( ) + −( ) − = −( ) − −( ) + ( )− − − −L L

where k = (n–1)/2 and C(i, j) = i!/j!(i–j)!.
If we write Eq. (2) as Pk(x) = 0, Pk(x) has the recurrence relation, Pk+1(x) = xPk(x) –

Pk–1(x) where P–1 = 1 and P0 = 1. Pk(x) is referred to as the DPF polynomials.

Fig. 1.  The diagonals, ρk, of an n-gon are shown where ρ0 denotes the edge.
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Consider the following identity, the proof of which is given in Theorem 1 of Appendix
A:

sin / sin .2 2 1nA A K x P x P xn
k

k k= ( ) = −( ) ( ) −( ) ( )3a

where x = 2cos2A, k = (n–1)/2 and Kn(x) is the sequence of polynomials called Fibonacci
polynomials of the second kind (see “Generalized Binet Formulas” by KAPPRAFF and
ADAMSON in another article in this issue) since the absolute values of the coefficients of
Kn sum to the n-th Fibonacci number as shown in KOSHY (2001), KAPPRAFF (2002) and
HOSOYA in this issue. They are generated by the recursion,

K x xK x K x K K xk k k+ −( ) = ( ) − ( ) = =1 1 1 21 where  and .

The first seven Fibonacci polynomials are,
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3b

We prove in Theorem 2 of Appendix A that the Fibonacci polynomials of the second kind
are related to the derivatives of the Chebyshev polynomials of the first kind. They are also
generated from Pascal’s triangle as shown in “Generalized Binet Formulas” by KAPPRAFF

and ADAMSON in this issue.
Note that the sum of the absolute values of the coefficients of Kn is the n-th Fibonacci

number. If A = jπ/2n, it follows from Eqs. (3a) and (3b) that Kn(x) = 0 and that ±2cosjπ/7
are roots of P3(x) and P3(–x). For example,

sin / sin14 2 7 3 3A A K x P x P x= ( ) = − ( ) ( )

where x = 2cos2A and, P(x) = cos7A/cosA and P(–x) = –sin7A/sinA.
Note that the sum of the absolute values of the coefficients of K7 is 13, the 7-th

Fibonacci number. If A = jπ/14, it follows that K7(x) = 0 and that ±2cosjπ/7 are roots of P3(x)
and P3(–x).

A general formula for the j-th diagonal of an n-gon with unit edge from KAPPRAFF

(2002) is,
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where ρ0 is the edge of the n-gon.

3.  The Pentagon

We begin with a statement of the case for n = 5, the pentagon. The standard Fibonacci
sequence, F5

(1) is,

a a a a ak k1 2 3 1 1 1 2 3 5 8 13 21 5... ... ...+ = ( )

where lim(ak+1/ak) = τ where τ = (1 + 5 )/2, the golden mean.
The following τ-sequence has identical algebraic properties as the integer sequence,

1 62 3 4τ τ τ τ τ... ...k ( )

i.e., it is also a Fibonacci sequence where,

1 + τ = τ2. (6a)

Since the diagonal of the pentagon with unit edge has length τ, we shall refer to this as a
ρ1-sequence, where ρ1 = τ.

Equation (6a) satisfies the DPF for n = 5. We present this in Table 1 as a multiplication
table expressed as left × top.

× 1 ρ1

1 1 ρ1

ρ1 ρ1 1 + ρ1

Table 1.

From this relation we can derive a generating matrix for the ρ1-sequence by considering
successive pairs of elements from the sequence to be a vector, i.e.,

  
v v v

T T T

1 1 2 1
2

1 3 1
3

1
21= ( ) = ( ) = ( )ρ ρ ρ ρ ρ, ,   , ,   , ,  K
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Consider the matrices,

M5
1 1 1

1 0
( ) = 





( )7a

and

M5
1 1 0 1

1 1
( )−

=
−







( )7b

where M5
(1) vn  = vn+1 . Therefore, M5

(1)(ρ1, 1)T = (ρ1
2, ρ1)T = (1 + ρ1, ρ1)T. The notation M5

(1)

refers to the fact that the matrix generates the ρ1-sequence for the 5-gon.
The same matrix also generates the Fibonacci sequence where, M5

(1) un  = un+1  where

u1 = (1, 1)T, u2  = (2, 1)T, u3  = (3, 2)T, ...

The eigenvalues of the inverse matrix M5
1 1( )−

 in order of decreasing absolute values are

λ π λ π
1 22

5
2

2

5
8= − = ( )cos ,  cos ,

obtained as the zeros of the irreducible characteristic polynomial,

P2(–x) = x2 + x – 1 (9)

where P2(x) is the generating polynomial of Eq. (2) for n = 5. That the eigenvalues of Eq.
(8) are the zeros of Polynomial (9) follows from Eq. (3a). The eigenvalues can also be
written as the ratio of diagonals,

λ ρ
ρ

λ ρ
ρ1

1

0
2

0

1

10= − = − ( ),  .

Furthermore, it follows from the DPF that, in general, when n is prime, quotients of
the diagonals can be written as a linear combination of diagonals (including edge 1) with
coefficients 0, 1, –1. For n = 5, Table 2 presents the ratio of diagonals, expressed in terms
of left ÷ top.

Table 2.

÷ 1 ρ1

1 1 ρ1 – 1
ρ1 ρ1 1
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Thus the diagonals of a pentagon form a golden field with basis vectors: 1, ρ1.

4.  The Heptagon

Denote the two diagonals of a heptagon by ρ1 and ρ2 (ρ0 = 1). From Eq. (4),

ρ1 = 1.801 ... and ρ2 = 2.24 ...

From Eq. (1), the DPF, the product of diagonals are given by Table 3 expressed as left ×
top.

Table 3.

× 1 ρ1 ρ2

1 1 ρ1 ρ2

ρ1 ρ1 1 + ρ2 ρ1 + ρ2

ρ2 ρ2 ρ1 + ρ2 1 + ρ1 + ρ2

Consider the ρ2 -sequence,

  1 111 2 1 2 2
2

1 2
2

2
3

1 2
3ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ K ( )

and the vectors,

  
v v v

T T T

1 2 1 2 2
2

1 2 2 2 2
3

1 2
2

2
21= ( ) = ( ) = ( )ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ, , ,  , , ,  , , ,  K

Using the relationships in Table 3, we define the matrix,

M7
2

1 1 1

1 1 0

1 0 0

( ) =
















( )12a

and

M7
2 1

0 0 1

0 1 1

1 1 0

( )− = −
−

















( )12b
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where, M7
(2)(ρ2, ρ1, 1)T = (ρ2

2, ρ1ρ2, ρ2)T = (1 + ρ1 + ρ2, ρ1 + ρ2, ρ2)T. Matrix M7
(2) generates

the ρ2-sequence for the 7-gon and will be referred to as the principal matix.
Likewise, M7

(2) un  = un+1  where,

  u u uT T T
1 2 31 1 1 3 2 1 6 5 3= ( ) ( ) = ( ), , ,  , , ,  , , ,  K

results in the generalized Fibonacci sequence, F7
(2),

a a a a ak k1 2 3 1 1 1 1 2 3 5 6 11 14 25 31 13... ... ...+ = ( )

where
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The irreducible characteristic polynomial of the inverse matrix M7
2 1( )−  is,

P3(x) = x3 – x2 – 2x + 1 (14)

which can be derived from Eq. (2) for n = 7. As a result of Eq. (3a), its roots are the
eigenvalues,

λ π λ π λ π
1 2 32

7
2

2

7
2

3

7
15= = − = ( )cos ,  cos ,  cos and

where,

λ ρ
ρ

λ ρ
ρ

λ ρ
ρ1

1

0
2

2

1
3

0

2

16= = − = ( ),  ,   .and

Table 4 lists the quotients of the diagonals represented as sums of diagonals expressed
as left ÷ top.
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Therefore the diagonals of a 7-gon form a golden field with basis vectors 1, ρ1, ρ2 and
coefficients 0, 1, –1.

In deriving Matrix (12a) only two of the three DPF relations expressed by Table 3 are
used. The third relation is expressed by another, ρ1-sequence,

  1 172 1 2 1 1
2

2 1
2

1
3

2 1
3ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ K ( )

and the vectors,

  
v v v

T T T

1 2 1 2 1
2

1 2 1 3 1
3

2 1
2

1
21= ( ) = ( ) = ( )ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ, , ,  , , ,  , , ,  K

From Table 3 we define matrix M7
(1) as,

M7
1

0 1 1

1 1 0

1 0 0

18( ) =
















( )

where,

M v M
T T T

7
1

1 7
1

1 2 1
2

1 2 1 1 1 2 11 1( ) ( )= ( ) = ( ) = + +( )ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ, , , , , ,

and, M7
(1) vn = vn+1 .

The corresponding generalized Fibonacci sequence, F7
(1) is,

1 1 1 2 2 4 3 7 6 13 10 23 19 19... ( )

where, u1  = (1, 1, 1)T, u2  = (2, 2, 1)T, u3  = (3, 4, 2)T, ... and M7
(1) un  = un+1  and,
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2 1

2 1
2, , , , ,  limK → =+

−

a
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k
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Table 4.

÷ 1 ρ1 ρ2

1 1 1 + ρ1 – ρ2 ρ2 – ρ1

ρ1 ρ1 1 ρ1 – 1
ρ2 ρ2 ρ2 – 1 1
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5.  The Nonagon

A similar analysis can be carried out for the 9-gon. We state the results. From Eq. (4),

ρ1 = 1.879 ..., ρ2 = 2.532 ..., and ρ3 = 2.879 ...

From Eq. (1) (DPF), Table 5 expresses the multiplication table for n = 9 as left ÷ top.

Table 5.

Consider the ρ3-sequence,

  1 201 2 3 1 3 2 3 3
2

1 3
2

2 3
2

3
3

1 3
3ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ K ( )

From Table 5 we derive the principal matrix,

M9
3

1 1 1 1

1 1 1 0

1 1 0 0

1 0 0 0

( ) =



















( )21a

and

M9
3 1

0 0 0 1

0 0 1 1

0 1 1 0

1 1 0 0

( )−

=
−

−
−



















( )21b

and the generalized Fibonacci sequence, F9
(3),

÷ 1 ρ1 ρ2 ρ3

1 1 ρ1 ρ2 ρ3

ρ1 ρ1 1 + ρ2 ρ1 + ρ3 ρ2 + ρ3

ρ2 ρ2 ρ1 + ρ3 1 + ρ2 + ρ3 ρ1 + ρ2 + ρ3

ρ3 ρ3 ρ2 + ρ3 ρ1 + ρ2 + ρ3 1 + ρ1 + ρ2 + ρ3
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1 1 1 1 1 2 3 4 7 9 10 19 26 30 56 22... ( )

where,
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3 1
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3, , , , ,  lim .K → =+
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a
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The eigenvalues of M9
3 1( )−

 are the zeros of the characteristic equation,

P4(–x) = x4 + x3 – 3x2 – 2x + 1 = (x + 1)(x3 – 3x + 1) (23)

where Polynomial (23) is derived from Eq. (2) for n = 9.
Note that since n = 9 is not prime, this equation is reducible and the factor (x + 1) is

the characteristic polynomial of the triangle inscribed within the 9-gon.
The eigenvalues are,

λ π λ π λ π λ π
1 2 3 42

9
2

9
2

3

9
1 2

4

9
24= − = = − = − = ( )cos ,  cos ,  cos ,  cosand 

where,

λ ρ
ρ

λ ρ
ρ

λ ρ
ρ

λ ρ
ρ1

1

0
2

3

1
3

2

2
4

0

3

1 25= − = = − − = ( ),  ,  ,  .and 

Table 6 lists the quotients of the diagonals as sums where the ratios are expressed as left
÷ top:

Table 6.

÷ 1 ρ1 ρ2 ρ3

1 1 ρ2 – 2 2 2

3
2 1ρ ρ− − 1 + ρ1 – ρ2

ρ1 ρ1 1 2 1

3
2 1ρ ρ− + ρ2 – ρ1

ρ2 ρ2 2 + ρ1 – ρ2 1 ρ1 – 1
ρ3 ρ1 + 1 ρ2 – 1 ρ ρ1 2 1

3

+ − 1
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In Table 6 we have eliminated ρ3 by recognizing that ρ3 = ρ1 + 1. Note that the coefficients
are now rational numbers reflecting that n = 9 is not prime. That the ratios with fractional
coefficients all have denominator ρ2 signifies that ρ2 is the edge of the triangle inscribed
in the 9-gon. The basis vectors of the golden field associated with n = 9 are now 1, ρ1, ρ2.

The following are the ρ1 and ρ2-sequences for n = 9:

  1 262 3 1 2 1 3 1 1
2

2 1
2

3 1
2

1
3

2 1
3ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ K a( )

  1 261 3 2 1 2 3 2 2
2

1 2
2

3 2
2

2
3

1 2
3ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ K b( )

Matrices corresponding to the ρ1 and ρ2-sequences are,

M9
1

0 0 1 1

0 1 1 0

1 1 0 0

1 0 0 0

( ) =



















( )27a

and

M9
2

1 1 0 1

1 1 1 0

0 1 1 0

1 0 0 0

( ) =



















( ). 27b

The generalized Fibonacci sequence, F9
(1) is,

1 1 1 1 2 2 2 4 4 3 7 8 6 14 15 10 28... ( )

where,
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1, , , , ,  lim ,K → =+

−
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k
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ρ
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7
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3 1

3 2
2, , , , ,  lim ,K → =−

−

a

a
k

k

ρ

  

1

1

2

1

4

2

8

3

15

6
3

3 2
3, , , , ,  lim .K → =

−

a

a
k

k

ρ
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The generalized Fibonacci sequence, F9
(2), is,

1 1 1 1 2 3 3 5 8 7 13 20 18 33 41 45 29... ( )

where,

  

1

1

2

1

5

3

13

7

33

18
3 1

3 2
1, , , , ,  lim ,K → =−

−

a

a
k

k

ρ

  

1

1

3

1

7

3

18

7

45

18
3 1

3 2
2, , , , ,  lim ,K → =+

−

a

a
k

k

ρ

  

1

1

3

1

8

3

20

7

51

18
3

3 2
3, , , , ,  lim .K → =

−

a

a
k

k

ρ

6.  The General Case

An n-gon for odd has (n–3)/2 diagonals denoted by,

  
ρ ρ ρ1 1

3

2
, ,  ,  .K m m

n
 where = −

The ρm-sequence is,

  

1

30

1 2 1 2 1
2

1
2

2
2

1
2 3

1
3ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρL L L Lm m m m m m m m m m m m− −

( )

and the corresponding principal matrix is,

Mn
m( ) =





























( )

1 1 1 1

1 1 1 1 0

1 1 1 0 0

1 1 0 0 0

1 0 0 0 0

31

. . .

. .

. .

. . . . . . .

. . . . . . .

. .

. .

a

and
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Mn
m( )−

=

−
−

−
−





























( )1

0 0 0 0 1

0 0 0 1 1

0 0 1 1 0

0 1 1 0 0

1 1 0 0 0

31

. .

. .

. .

. . . . . . .

. . . . . . .

. .

. .

. b

From Eq. (2), the characteristic polynomial, where k = (n–1)/2 is,

Pk(x) for k odd, and Pk(–x) for k even.

The characteristic polynomials are irreducible when n is prime. If n1 is a factor of n then

the characteristic polynomial is factorable, and either Pk1
(x) or Pk1

(–x), corresponding to

the inscribed n1-gon is a factor of Pk(x) or Pk(–x). For example, for n = 9, Eq. (23) shows
that P1(–x) is a factor of P4(–x) and shares the root of the inscribed triangle. Likewise for
n = 15,

P x x x x x x x x x x x x x x x7
7 6 5 4 3 2 2 4 3 26 5 10 6 4 1 1 1 4 4 1

32

( ) = − − + + − − + = −( ) − −( ) + − − +( )
( )

so that P7(x) shares the roots of P1(x), the characteristic polynomial of the inscribed
triangle, and P2(x) is the characteristic polynomial related to the inscribed pentagon. It also
follows that any n-gon with n divisible by 3 has λ = ±1 as an eigenvalue.

The eigenvalues can be expressed as,

λ π
j k j k

n
= −( ) +( ) ( )2 2 1 33cos

where,

λ
ρ

ρj
k j

j

= ( )−( )

−

2

1

34

for j = 1, 2, ..., k and k = (n–1)/2. Note that in Eq. (34), ρ2i = ρ2(k–i)+1 for (n–1)/2 ≤ i ≤ n –
3.

In addition, there are m generalized Fibonacci and ρj-sequences corresponding to
matrices, Mn

(j) for j = 1, 2, ..., m.
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Each n-gon has a golden field associated with it in which both products and quotients
can be expressed as linear combinations of the diagonals. If n is prime, the coefficients of
the quotients are 0, 1, –1, and the basis vectors of the golden field are 1, ρ1, ρ2, ..., ρm. If
n is not prime, the coefficients are rational numbers, and the basis vectors are a subset of:
1, ρ1, ρ2, ..., ρn.

It can also be shown that the many combinatoric relations involving the numbers of the
Fibonacci sequence continue to hold for the generalized Fibonacci sequences. These
relationships will be explored in a future paper.

7.  Polygons and Chaos

Consider the sequence of Lucas polynomials, Lm, of the second kind as described in
“Generalized Binet Formulas” by KAPPRAFF and ADAMSON in this issue. The first six
Lucas polynomials are,

L0(x) = 2
L1(x) = x
L2(x) = x2 – 2
L3(x) = x3 – 3x
L4(x) = x4 – 4x2 + 2
L5(x) = x5 – 5x3 + 5. (35)

They are generated by the recursion,

L x xL x L x L L xk + ( ) = ( ) − ( ) = =1 1 0 22 where  and .

The Lucas polynomials are related to the Chebyshev polynomials of the second kind and
have the defining property described by KAPPRAFF and ADAMSON (2005), and KAPPRAFF

(2002),

Fig. 2.  a) The Mandelbrot set; b) A generalized Mandelbrot set corresponding to L6(x) as derived by KAPPRAFF

and ADAMSON (2005). Computer image created by J. Barrallo.

(a)
(b)
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Lm(2cosθ) = 2cosmθ. (36)

In particular, L2 = x2 – 2 is a special case of the operator that generates the Mandelbrot set,

  z z ca 2 +

for c = –2, the leftmost point on the real axis of the Mandelbrot set shown in Fig. 2a.
KAPPRAFF and ADAMSON (2005) have shown that the other Lucas polynomials lead to
somewhat more complex Mandelbrot sets such as the one shown in Fig. 2b for L6(x).
Beginning with x = x0, the recursion,

  x xa 2 2 37− ( )a

generates the trajectory: x0, x1, x2, ..., xk where x0 → x1 → x2 → ... → xk ... If xp = x0 the
trajectory is periodic with period p.

Next consider x to be the n × n diagonalizable matrix X, and rewrite Eq. (37a) as,

  X X Ia 2 2 37− ( )b

where I is the n × n identity matrix. We refer to Eq. (37b) as the Mandelbrot Matrix

Operator (MMO). We claim that for each n-gon for odd n, setting either X0 = – Mn
m( )−1

 or

X0 = – Mn
m( )−1

(see Eq. (31b)) results in a periodic trajectory of period p depending only on
the value of n, with the same values of p as described by KAPPRAFF and ADAMSON (2005),
i.e., p is the smallest positive integer such that,

2p ≡ ±1(modn). (38)

For example, for the pentagon, n = 5, using Eq. (7b),

X M X X M0 5
1

1 2 5
11 10 1

1 1
= → =

−






→ =( ) ( )− −

so that M5
1 1( )−

 repeats with period 2. For the hexagon, n = 7, using Eq. (12b),

X M X X X M0 7
2

1 2 3 7
21 1

1 1 0

1 0 1

0 1 0

0 1 1

1 0 0

1 0 1

= − → =
− −
− −

−

















→ =
−

















→ = −( ) ( )− −

so that – M7
2 1( )−

 has period p = 3.
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We state this result as a Theorem.

Theorem:  If X is an n × n diagonalizable matrix and either X0 = – Mn
m( )−1

 or X0 = – Mn
m( )−1

,
depending on n, the Mandelbrot matrix operator, X   a  X2 – 2I has a periodic trajectory with
period p.

Proof:  We shall demonstrate this for the case n = 5 and n = 7. The proof for general n
follows in a similar manner.

Since X is diagonalizable, there exists a matrix of eigenvectors P such that,

X = P–1ΛP (39)

where, Λ is the matrix of eigenvalues, Λ = λiδij (no summation on i) and δij is the Kronecker
delta. Replacing X into the MMO (37b) yields,

X2 – 2I = P–1((λi
2 – 2)δij)P. (40)

If λi or –λi is given by Eq. (32) then X =  Mn
m( )−1

 or X = – Mn
m( )−1

 and the result follows by
replacing λi or –λi with its value given by Eq. (33) into Eq. (40) and using Eq. (36) for m
= 2. We shall demonstrate this for n = 5 and n = 7.

If n = 5, using Eq. (34),

λ π π π π π
1 2

5
2

2

5
2

4

5
2

5 1

5
2

5
= − → → = −( ) = −cos cos cos cos cos .

We abbreviate this sequence by considering the coefficients of the numerator of the
arguments, i.e.,

λ π π π
1 2

5
1 2 4 2

4

5
2

5
= − ≡ → → = ≡ −cos cos cos .

In a similar manner,

λ π π π
2 2

2

5
2 4 8 2

8

5
2

2

5
= ≡ → → ≡ =cos cos cos .

Thus we have demonstrated that M5
1 1( )−

 has period 2.
If n = 7, using Eq. (37),

− = − ≡ → → → ≡ = −λ π π π
1 2

7
1 2 4 8 2

8

7
2

7
cos cos cos
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− = − ≡ → → → ≡ = −λ π π π
2 2

2

7
2 4 8 16 2

16

7
2

2

7
cos cos cos

− = − ≡ → → → ≡ = −λ π π π
3 2

3

7
3 6 12 24 2

24

7
2

3

5
cos cos cos .

Thus we have demonstrated that – M7
2 1( )−

 has period 3.
In a similar manner, as demonstrated by KAPPRAFF and ADAMSON (2005), using Eq.

(36), this result continues to hold for the generalized Mandelbrot matrix operators
(GMMO), X   a  Lm(X) with periods given by the smallest positive integer, p, such that,

mp ≡ ±1(modn)

where Lm(X) for m = 2, 3, 4, and 5 is given by Eq. (35) with X replacing x.
Slavik Jablan and Radmila Sazdanovich have done an exhaustive computer study of

matrices with 0, 1, –1 elements to determine their periodic behavior under the Mandelbrot
Matrix Operators. Their results for the case of 3 × 3 matrices under the Matrix Operator
(36b) are summarized:

Of all the 39 matrices with elements 0, 1, –1, 384 have period 3. Among these, 120 have
the characteristic equation

P3(x) = x3 – x2 – 2x + 1 (41a)

while 120 matrices have the characteristic equation,

P3(–x) = x3 + x2 – 2x – 1. (41b)

The first 120 have period {3, –1}, and the other {3, 1} where {p, ±1} refers to a trajectory
with period p and either the matrix M or –M as the initial matrix.

Among these 240 matrices, only matrices are selected with 0, 1, –1 as elements of their
inverses. There are 96 such matrices. They are,

a) 48 with {3, 1} and 48 with {3, –1};
b) the first 48 have characteristic polynomial P3(–x), the other 48 have characteristic

polynomial P3(x).
The characteristic equation for each of the 48 matrices with {3, 1} is invariant under the
Matrix Mandelbrot Operator. The characteristic equation of the 48 matrices with {3, –1}
transform to matrices with the characteristic equation of {3, 1} under the Mandelbrot
operator.

From each set of 48 matrices there are 8 matrices (16 total) that have the form of a DPF
inverse in that either upper or lower triangular elements are either 1 or –1 as in Eq. (12a).

Among these 16 matrices with DPF inverses there are exactly 8 matrices that have
diagonals all of whose elements are either 1 or all –1 as in Eq. (12b). Four of these matrices
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are {3, 1} while the other 4 are {3, –1}.
Similar results can be found for all k × k matrices and for the other Lm operators.
We can make the following general results for the L2 MMO:
1. Corresponding to characteristic equation Pk(x) or Pk(–x) there are 2k+1 matrices

whose inverses are DPF. They can be described by matrices whose main diagonal and its
neighbor are filled by 1 or –1;

2. Among these matrices, 2k will have characteristic equation Pk(x) and the other 2k

will have Pk(–x). One of these will have {p, 1} trajectories and the other {p, –1};
3. For every k, there are exactly four matrices with only 1 or –1 on the diagonal with

trajectory {p, 1} and four with {p, –1}.

8.  Reflected Waves

Consider light rays incident to two slabs of glass as shown in Fig. 3. There is one wave

Fig. 3.  Multiple reflections in two sheets of glass.
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with no reflections, 2 waves with 1 reflection, and 3 waves with 2 reflections. In fact for
the number of waves, Nk, with k reflections, Nk = ak+1 from the F5

(1)-sequence (the standard
Fibonacci sequence): 1, 2, 3, 5, 8, ..., as demonstrated by HUNTLEY (1970).

Next consider three slabs of glass. It has been shown by MOSER and WYMAN (1973)
and HOGGATT and BICKNELL-JOHNSON (1979) that Nk = a2k+1, a subsequence: 1, 3, 6, 14,
31, ... of F7

(2) (see Sequence (13)), the generalized Fibonacci sequence associated with the
heptagon.

Likewise, for m planes of glass, Nk = a(m–1)k+1, a subsequence of the generalized

Fibonacci sequence F m
m

2 1
1

+( )
−( ) .

Appendix A:  Fibonacci Polynomials of the Second Kind

We state the following theorem about the Fibonacci polynomials of the second kind:

Theorem 1:  For n odd and k = (n–1)/2,

  
K x

nA

A
A A A kAn ( ) = = + + + + + ( )sin

sin
cos cos cos cos

2

2
1 2 4 2 8 2 12 2 4L A1a

where x = 2cos2A.
For n even and k = (n–1)/2,

  
K x

nA

A
A A A n An ( )

sin

sin
cos cos cos cos ( ) .= = + + + + − ( )2

2
2 2 2 6 2 10 2 2 1L A1b

For n odd, Kn(x) = Pk(x)Pk(–x) where Pk(x) are the DPF polynomials (see Eq. (2)).

Proof:  Consider the elementary trigonometric identity,

cos sin sin sin( .jA A j A j A= +( ) − −( )( ) ( )1

2
1 1 A2

Summing this equation for j = 2, 4, 6, ..., 2k yields the collapsing sum,

  

sin

sin
cos cos cos cos .

nA

A
A A A kA= + + + + +1 2 2 2 4 2 6 2 2L

Replacing A → 2A yields,

  

sin

sin
cos cos cos cos .

2

2
1 2 4 2 8 2 12 2 2 1

nA

A
A A A n= + + + + + −( )L

For n even, and k = |(n–1)/2|, setting j = 1, 3, 5, ..., 2k – 1, yields after replacing A → 2A,



386 J. KAPPRAFF et al.

  

sin

sin
cos cos cos cos .

2

2
2 2 2 6 2 10 2 2 1

nA

A
A A A n A= + + + + −( )L

Next we show that Kn satisfies the Recursion Relation (A1). This follows from the
elementary trigonometry identity,

sin2nA = 2sin(n – 1)2Acos2A – sin(n – 1)2A. (A3)

Let x = 2cos2A and Kn = (sin2nA)/(sin2A). Dividing Eq. (A3) by sin2A immediately yields
the recursion relation,

Kn = xKn–1 – Kn–2.

But since,

K
A

A
K

A

A

A A

A
x1 2

2

2
1

4

2

2 2 2

2
= = = = =sin

sin

sin

sin

sin cos

sin
 and 

it follows that Kn(x) must be the Fibonacci-Pascal polynomials with alternating signs also
shown in Eq. (3b). It is easy to see that Kn are even functions when n is odd. As a result,
if x is a root then so is –x and Kn factors into Pk(x)Pk(–x) where Pk(x) are the DPF
polynomials. That (sinnA)/(sinA) = P(–x) and (cosnA)/(cosA) = Pk(x) where x = 2cos2A and
k = (n–1)/2 can be proved in a similar manner. If n is odd, Kn is an odd function of x.

Theorem 2:   K x
n

dT
x

dxn

n

( ) =





2 2

The Chebyshev polynomials of the first kind have the property (MASON and HANDSCOMB,
2003),

Tn(y) = cosnθ for y = cosθ.

Therefore,

dT y

dy

d n d

d d
n

nn ( ) = =cos /

cos /

sin

sin
.

θ θ
θ θ

θ
θ

Let, θ = 2A and x = 2cos2A = 2y.
Then it follows that,

1 2

2n

dT y

dy

nA

A
K xn

n
( ) = = ( )sin

sin
.
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But,

1 2 2
n

dT y

dy n

dT
x

dx
n

n( ) =







.

And the result follows. QED.
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