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Abstract.  By defining the non-adjacent number, p(G, k), and topological index, ZG, for a
graph G, several sequences of graphs are shown to be closely related to the golden ratio,
τ. Namely, the Z-values of the path and cycle graphs are Fibonacci, and Lucas numbers,
respectively, and thus the ratio of consecutive terms of Z converges to τ. Several new
sequences of graphs (golden family graphs) were found whose Z-values are either
Fibonacci or Lucas numbers, or their multiples. Interesting mathematical relations among
them are introduced and discussed.

1.  Introduction

It has already been shown by LUCAS (1876) that the Fibonacci numbers can be
obtained from the Pascal’s triangle by rotation and addition in a certain way. The golden
ratio can then be asymptotically obtained by taking the ratio of consecutive Fibonacci
numbers, whose graph-theoretical aspects have been pointed out by the present author
(HOSOYA, 1971, 1973) in terms of the topological index, Z, which is the sum of the non-
adjacent numbers for a given graph. Similar properties of the Lucas numbers related to the
golden ratio have also been demonstrated.

Recently several new sequences of graphs were found whose Z-values are either
Fibonacci or Lucas numbers, or their multiples. They are called golden family graphs, and
their interesting mathematical structure will be presented in this paper. The methodology
developed here can be applied to the problems of general recursive sequences, widening
their field of algebraic analysis to geometrical or graph theoretical realms.

2.  Graph, Topological Index, and Fibonacci Numbers

In graph theory (HARARY, 1969) a graph, G, is a set of vertices and edges. We are
concerned only with non-directed and connected graphs. Except for a few cases, multiple
edges are excluded. Path graphs, Sn, and cycle graphs, Cn, are the most fundamental
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sequences of tree and non-tree graphs, respectively, where n denotes the number of vertices
(Fig. 1).

The present author (HOSOYA, 1971, 1973) has defined the topological index, Z, for
characterizing the topological nature of graphs representing the carbon atom skeleton of
hydrocarbon molecules (CVETKOVIC et al., 1995; BALABAN and IVANCIUC, 1999; KOSHY,
2001). In order to obtain the value of Z for G one first defines the non-adjacent number,
p(G, k), or k-matching number, as the number of ways to choose k-disjoint edges (bonds)
from G. The largest value of k for G with n vertices is denoted by m = [n/2]. The non-
adjacent number, p(G, m), for G with even n is equal to the perfect matching number, or the
Kekulé number, K(G), in chemistry. The topological index Z for G is defined as the sum
of all p(G, k) numbers.

The p(G, k) numbers have a special algebraic meaning for graphs, especially for trees.
Namely, the characteristic polynomial, PG(x),

PG(x) = (–1)ndet(A – xE), (1)

of a given tree G is expressed in terms of the p(G, k) numbers as,

P x p k xk n k
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=
∑ 1 22

0

, .

Here A and E are the adjacency and identity matrices of order n. For general graphs with
cycles, PG(x) can also be expressed in terms of the p(G, k) numbers for the set of subgraphs
of G but in a more complicated fashion (HOSOYA, 1972).

Table 1 shows the p(G, k) numbers and Z-values for smaller members of Sn and Cn. By
joining a pair of vertices with a pair of edges one gets digon, C2, given in Fig. 1, which has
the same set of p(G, k) numbers and thus has the same Z-value as S3. We refer to a set of

Fig. 1.  Path graphs (Sn), cycle graphs (Cn), and Yn graphs. The topological indices of Sn are Fibonacci numbers,
Fn, while those of the isomatching pair of Cn and Yn are Lucas numbers, Cn.
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graphs with this property as isomatching graphs. However, S3 and C2 are not isospectral
graphs, since they have different PG(x)s. Of course, among tree graphs isomatching graphs
are always isospectral with respect to each other.

Most important for Table 1 is that the topological indices of the sequences of path and
cycle graphs are the Fibonacci (Fn) and Lucas (Ln) numbers, respectively. Note, however,
that the initial conditions for Fn,

F0 = F1 = 1, (3)

in Table 1 are shifted by one step from the conventional definition (VOROBIEV, 1961;
HOGGATT, 1969) while those for Ln,

L0 = 2,  L1 = 1, (4)

are the same.
The ratio of consecutive terms from these two sequences are well known to converge

to the golden mean, τ = (1+ 5 )/2,

Fn/Fn–1,  Ln/Ln–1 → τ, (5)

as a result of their common recursive relation,

fn = fn–1 + fn–2. (6)

Numerous sequences of graphs can be generated whose Z-value ratios converge to τ. Let
us therefore define golden family graphs as those sequences of graphs whose Z-values form

Table 1.  Non-adjacent numbers p(G, k) and topological indices Z of path (a) and cycle graphs (b).
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either Fn or Ln sequences, or their multiples. It is already known that the sequence of graphs,
Yn, given in Fig. 1 are isomatching with Cn and belong to the golden family. It can be proved
that there exist no isomatching sequence of graphs with Sn, but there are known to be a
number of graphs whose Z-values are terms from Fn or Ln but with different p(G, k)
distributions. The main purpose of the present paper is to introduce new members of the
golden family.

For later discussion, let us call the two right-angled arrays of numbers in Table 1 the
Fibonacci triangle*, FT, and the Lucas triangle**, LT, both of which are closely related
to the Pascal’s triangle. Both FT and LT can be generated from the pair of numbers in the
first and second rows by successive application of the “rook sum.” First, select a given
number; move to the southeast neighbor; add both numbers; and assign their sum as the
southern neighbor of the latter number. This recurrence relation turns out to be a variation
of the “Y-sum” in Pascal’s triangle.

*This is different from the “Fibonacci triangle” proposed earlier by the present author (HOSOYA, 1976).
**This is a little different from the “Lucas triangle” proposed by FEINBERG (1967).

a)  Pascal’s triangle (PT)

 1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

b)      Asymmetrical Pascal’s triangle (APT)

 1

1 2

1 3 2

1 4 5 2

1 5 9 7 2

1 6 14 16 9 2

1 7 20 30 25 11 2

c)    PT + PT’ = APT

 1

1 1+1

1 2+1 1+1

1 3+1 3+2 1+1

1 4+1 6+3 4+3 1+1

1 5+1 10+4 10+6 5+4 1+1

1 6+1 15+5 20+10 15+10 6+5 1+1

Table 2.  Pascal’s and asymmetrical Pascal’s triangles.
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3.  Pascal’s Triangle and Asymmetrical Pascal’s Triangle

Pascal’s triangle is a triangular array of the binomial coefficients,

B n k
n

k
n

k n k
,

!

! !
( ) = 





=
−( ) ( )7

(BONDARENKO, 1993). The triangle shown in Table 2a is the standard form and denoted
here as PT. In principle, all integers in PT can be generated from only the top 1 by applying
the Y-sum.

The Fibonacci numbers from this arrangement can be obtained by adding the numbers
along the northeast diagonals (HOGGATT, 1969; KOSHY, 2001). By rotating PT of Table 2a
by about 30 degree clockwise, a skewed form of FT can be recognized. This means that all
the integers of PT replicate the whole family of p(G, k) numbers for the sequence of path
graphs, Sn, and vice versa. This graph-theoretical connection of PT has already been
pointed out by the present author (HOSOYA, 1971, 1973).

From this discussion one obtains the following important combinatorial relation,

p k
n k

knS , .( ) =
−





( )8

Similar graph-theoretical features of Lucas numbers can be obtained by adding a pair
of PTs by shifting one row with respect to the other to give the asymmetrical Pascal’s
triangle (APT), as shown in Table 2(b) and (c) (HOSOYA, 1995, 1998). This relation can be
expressed symbolically by

Fig. 2.  Recursion formulas of p(G, k), QG(x), and ZG, using a pair of subgraphs, G–l and G�l which are obtained
by deleting an arbitrary chosen edge l from G.

l

G G  l  lG

 lGp(          , k -1)p(G,k) p(G  l,k)= +

Q(G, x) = x+Q(G- l, x) Q(G   l ,

 

x)

Z(G) = +Z(G- l ) Z(G    l )
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PT + PT′ → APT. (9)

If an element of APT is denoted by A(n, k), the above relation corresponds to the following
identity,

A(n, k) = B(n, k) + B(n–1, k–1). (10)

FEINBERG (1967) arrived at this triangle by expanding the polynomial (x + y)n–1(x + 2y), and
called it the Lucas triangle. However, our LT in Table 1 can be obtained from it (APT of
Table 2b) by rotation of about 30 degree clockwise in the way that FT, was derived from
PT. KAPPRAFF (2002) calls APT the generalized Pascal’s triangle.

If a PT is subtracted from another PT after shifting downwards by two steps along the
right slant roof, one also gets an APT. However, in this case an extra pair of 1’s is attached
on top of the right slant diagonal of the APT (HOSOYA, 1998). Then one may denote this
capped triangle as APT′, and this relation can be expressed symbolically by,

PT – PT″ → APT′. (11)

This APT′ gives the degree of degeneracy of the angular part of the atomic wave-function
of hypothetical n-dimensional hydrogen-like atoms.

4.  Recursion Formula

In what follows, it is useful to consider the Z-counting polynomial, QG(x), defined by,

Q GG x p k xk

k

m

( ) = ( ) ( )
=
∑ , .

0

12

With this polynomial the topological index is defined as follows:

Z p k
k

m
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By using Eq. (8), QG(x) for Sn is written as

QSn
x

n k

k
xk

k

m

( ) =
−





( )
=
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15.

We then have,

Z F
n n nS SQ= ( ) = ( )1 16.
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As the size of the graph increases, the number of steps for enumerating p(G, k)
numbers and Z-values increases quite rapidly. For this purpose several efficient recursion
formulas have been proposed using the inclusion-exclusion principle (HOSOYA, 1971,
1973; HOSOYA and MOTOYAMA, 1985). The simplest and most fundamental one will be
explained here.

Consider graph G in Fig. 2, where l is an arbitrarily chosen edge. Define subgraph G–
l as the graph obtained from G by deleting l, and G�l as the graph obtained by deleting l
together with all the edges incident to l. The recursion relations for p(G, k) and QG(x) are
expressed by,

p(G, k) = p(G–l, k) + p(G�l, k–1) (17)

and

QG(x) = QG–l(x) + xQG�l(x). (18)

As a result, one gets the following useful recursion formula for ZG:

ZG = ZG–l + ZG�l. (19)

The first term on the rhs of Eq. (17) is the number of l-exclusive possibilities from G,
while the second term gives the number of l-inclusive possibilities. Note that the argument
in the second term is k–1, since l has already been included as a member of the k edges. The
Recursion Formula (18) of the Z-counting polynomial can be obtained by summing Eq. (17)
after multiplying by xk. The x in the second term of Eq. (18) is automatically factored out,
since it accounts for the selection of edge l for l-inclusive enumeration.

Examples of the use of the recursion formulas, Eqs. (17)–(19), are given in Fig. 3.
Applying them to Cn, as in Fig. 3a one gets,

p(Cn, k) = p(Sn, k) + p(Sn–2, k–1), (20)

Q Q QC S Sn n n
x x x x( ) = ( ) + ( ) ( )

−2
21,

and

Z Z Z

L

n n n

n n

C S S

CQ

= +

= ( ) = ( )
−2

1 22.

The explicit form of QCn(x) is derived by combining Eqs. (15) and (21) as,

QCn
x

n

n k

n k
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Fig. 3.  Examples for the use of the recursion formula of Fig. 2 for deriving the characteristic quantities of various
golden family graphs. G–l is obtained by deleting the double-crossed edge l, and further deletion of the edges
crossed by dotted lines yields G�l.
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The first equality of Eq. (22) represents the well known relationship,

Ln = Fn + Fn–2. (24)

5.  Discovery of New Golden Family Graphs

The p(G, k) numbers and Z-values for smaller tree and non-tree graphs have been
extensively tabulated by the group of the present author (MIZUTANI et al., 1971; KAWASAKI

et al., 1971). Several new members of the golden family graphs were discovered by
scrutinizing these tables.

5.1.  Apple and worm graphs
We refer to the two sequences of graphs in Fig. 4 as apple graphs (An) and worm

graphs (Wn), whose Z-values are both equal to 2Fn. They are found to be isomatching with
respect to each other, and their p(G, k) numbers are given in Table 3a. Graph An is
constructed from Cn and a branch of unit length. By cutting the terminal edge and applying
the recursion formula as in Fig. 3b, the following expressions can be derived:

QAn(x) = QCn(x) + xQSn–1(x) (25)

and

ZAn = ZCn + ZSn–1
= (Fn + Fn–2) + Fn–1 = 2Fn. (26)

The general expression for the p(G, k) numbers of these two sequences of graphs are
obtained as follows by using Eqs. (15) and (23):

Fig. 4.  A pair of isomatching golden family graphs, apple (An) and worm (Dn) graphs, whose Z-values are 2Fn.
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In the case of Dn one needs to open the triangle by cutting one of its edges to get Sn+1
(see Fig. 4), and follow the standard procedure. Then a result similar to An can be obtained,

ZDn = Fn+1 + Fn–2
= (Fn + Fn–1) + Fn–2 = 2Fn. (28)

Equation (27) also holds for Dn.
It is interesting to note that the right-angled triangle of Table 3a can be generated from

a pair of FT by shifting three steps as demonstrated in Table 3b. This relation can be
expressed symbolically by,

FT + FT� → An, Dn, (29)

which can be justified by considering the first equality of Eq. (27) and with the aid of Eq.
(20) as,

p(An, k) = p(Sn, k) + p(Sn–2, k–1) + p(Sn–1, k–1)
= p(Sn+1, k) + p(Sn–2, k–1). (30)

5.2.  Rabbit, clock, and cocktail glass graphs
Figure 5 illlustrates a quartet of isomatching sequences of graphs, Rn, Ln, Mn, and On,

whose Z-values are Fibonacci numbers, but with different p(G, k) distributions as shown
in Table 4a. Note that R1 is S3, and the lowest three members of Ln and Mn (n = 1–3)

Table 3.  Non-adjacent numbers p(G, k) and topological indices Z of An and Dn graphs (a) as derived from a pair
of FT′s (b)
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beginning with C2 are identical. Only the sequence On begins from n = 4. Because of their
shape, we nickname them: rabbit, clock-1, clock–2, and cocktail graphs, respectively. The
reason for the naming of the clock graph will be explained later.

It is evident from Fig. 3c that the recursion formulas for Rn can be derived as

QRn(x) = QAn(x) + xQSn–1(x) (31)

and

ZRn = ZAn + ZSn–1
= 2Fn + Fn–1 = Fn+2. (32)

Fig. 5.  The quartet isomatching golden family graphs, rabbit (Rn), clocks, (Ln and Mn), and cocktail glass (On)
graphs, whose Z-values are Fn.

Table 4.  Non-adjacent numbers p(G, k) and topological indices Z of Rn, Ln (L-1), Mn (L-2), and On graphs (a)
as derived from LT and FT (b).
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As shown in Fig. 3d, the recursion relations for Ln (j = 2) and Mn (j = 3) are,

Q Q QA SL n nn
x x x x( ) = ( ) + ( ) ( )−1 33

and

Z Z Z

F F F

L n n

n n n

n
= +

= + = ( )
−

− +

A S 1

1 22 34.

The recursion relations for On are not as simple to express but nevertheless exist.
The general form of the p(Gn, k) numbers can be derived as,

p k p k p k

n n k n k

k n k
n

n n nG A S

G = R,  L,  M,  O
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! !
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1 2
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In this case, it is observed that the p(G, k) numbers of this quartet of graphs can be
obtained by adding a pair of FT and LT as shown in Table 4b. This relation is expressed
symbolically as,

Fig. 6.  Four isomatching clock graphs.
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LT + FT� → Rn, Ln, Mn, On. (36)

This relation can be explained beginning with the first equality of Eq. (35) as

p(Gn, k) = p(Cn, k) + 2p(Sn–1, k–1)
= p(Cn, k) + p(Sn–1, k–1) + p(Sn–2, k–1) + p(Sn–3, k–2)
= p(Cn, k) + p(Cn–1, k–1) + p(Sn–2, k–1)
= p(Cn+1, k) + p(Sn–2, k–1)  (G = R, L, M, O). (37)

All members of the sequence of isomeric clock graphs, L-n, up to n = 4 are shown in
Fig. 6. The reason why they are isomatching has already been explained above. Note,
however, that neither of them are isospectral with respect to each other.

We have seen that the Z-values of all sequences of graphs shown in Figs. 4–6 are either
Fn or its multiple, and thus they belong to the golden family.

5.3.  Q-shaped graphs
A pair of isomatching sequences of graphs, Qn, and On, were found whose Z-values are

Lucas numbers but with different p(G, k) distributions from Cn (See Table 1). As shown in
Fig. 3e the QG(x) of Qn can be decomposed into fragments, as follows, by using Eqs. (21)
and (25):

QQn(x) = QAn+1(x) + xQSn–2(x)
= QCn+1(x) + xQSn(x)+ xQSn–2(x)
= QSn+1(x) + x{QSn(x) + QSn–1(x) + QSn–2(x)}. (38)

The QG(x) of Ωn are the same. Since the general expressions for their p(G, k) and QG(x) are
so complex, there is no point in describing them here.

6.  Silver Family Graphs

The silver mean is the positive root, θ = 1 + 2 , of x2 – 2x – 1 = 0 (DUPUIS and
LAWLOR, 1979; KAPPRAFF, 2002, and KAPPRAFF and ADAMSON, and KAPUSTA in this
issue), which is the limit of the ratio of consecutive terms of both the Pell sequences
(ALEXANDERSON, 1966), Pn, and Pell-Lucas sequence (HORADAM and MAHON, 1985), Qn.
defined by,

Pn = 2 Pn–1 + Pn–2, with P0 = 1, P1 = 2* (39)

and

Qn = 2Qn–1 + Qn–2, with Q0 = Q1 = 2 (40)

*Conventional initial conditions are P0 = 0 and P1 = 1.
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Since there are several sequences of graphs whose Z-value ratios converge to θ = 1 +
2 , we shall call them silver family graphs. Three sequences of graphs, Un, Tn, and CUn,

are shown in Fig. 7.
One can extend this type of graph-theoretical analysis to a variety of number

sequences. In this way mathematical relations satisfied by a set of recursive number
sequences that obey the same recursion formula can be transformed into another set of
sequences of graphs. In this way, a fundamental understanding of their whole mathematical
structure can be obtained both visually and systematically.
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