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Analysis of Turing Patterns on a Spherical Surface
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We considered Turing patterns on a spherical surface from the viewpoint of polyhedron geometry. We restrict
our consideration to a set of parameters that produces a pattern of spots. We obtained numerical solutions for
the Turing system on a spherical surface and approximated the solutions to convex polyhedrons. The polyhedron
structure was dependent on both the radius of the sphere R and the initial condition. The number n of faces of
the polyhedron increased with an increase in R. For small values of R, highly ordered structures were observed.
With an increase of the value of R, a variety of structures were observed for each n, and the symmetry property
of the spots, which determined the regularity of the polyhedron structure, gradually disappeared. We classified
the numerical results according to their symmetrical properties of the approximated polyhedrons. The results
revealed that the obtained Turing patterns lost symmetrical properties and varied the structures within same
number of spots.
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1. Introduction
A Turing system [1] is a famous model in mathematical

biology [2], and it is used to theoretically describe the mor-
phogenesis of biological patterns. It consists of a couple
of partial differential equations that describe the changes in
concentrations of two chemical species, which are called
the activator and the inhibitor. It is thought that this is the
fundamental mechanism by which creatures are covered in
patterns of spots or stripes [3]. The variety of patterns is
thought to be caused varying the reaction term and the val-
ues of the parameters.

Varea et al. [4] reported a model for a Turing pattern on
a spherical surface. According to their paper, the patterns
varied with the values of the parameters. They suggested
that the variety of the spot patterns is related to the skeletal
structure of spherical radiolaria, a kind of marine plankton
[5]. In their paper, the structural properties of the obtained
patterns were discussed for only a few cases. Therefore,
a systematic consideration of the pattern structure is still
required. In order to do this systematically, we introduce
an approximation method that converts the patterns on a
spherical surface to polyhedrons.

In a two-dimensional system, the spot patterns seem to
be almost regular [6], and the pattern can be regarded as
an optimized packing of equiradial disks on a plane [7].
Therefore, it is meaningful to compare a Turing pattern
on a sphere with an optimized point configuration on a
spherical surface. On the other hand, It is well known
that Turing patterns depend on the initial conditions and
size of domains [8]. The system size dependence causes
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the existence of characteristic domain size of the Turing
patterns. Callahan and Knobloch [9] revealed that patterns
become less regular because many unstable modes exist
and interact each other as the domain grows. It is not
cleared yet how such dependences work on the spherical
surfaces. The optimized configuration of a given number
of points on sphere was discussed by Erber and Hockney
[10]. For a given number of charged points on a sphere,
they obtained the distribution that minimized the Coulomb
energy of the system. For each number of points from 2 to
65, they summarized the fundamental properties such as the
dipole moment, the Coulomb energy, the Coulomb angle,
and the Tammes angle. Unfortunately, they did not discuss
the symmetry property of the allocation of points over the
whole sphere.

A polyhedron approximation using the Voronoi tessella-
tion reveals features of the distribution of points on a spher-
ical surface: the relationship between a set of spherical
points and its regularity. The structure was obtained by a
Voronoi tessellation on a spherical surface [11]. The shapes
of the faces and the degrees of the vertices show how the
points are allocated among the neighboring points. Also,
the shape of the polyhedron shows intuitively the symmet-
rical properties of the allocation of the points. Recently,
Yoshino [12] obtained the optimized point distribution on a
spherical surface using the method of steepest descent (SD)
and simulated annealing, and the results were then com-
pared using a polyhedron approximation.

In this paper, we consider the distribution of spots in a
Turing pattern on a spherical surface, using the correspond-
ing polyhedron structure obtained from the distribution. In
order to discuss this, we first calculate numerical solutions
for a Turing system on a sphere. Next, we obtain the dis-
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Fig. 1. An example of a binarized numerical solution and the correspond-
ing approximated polyhedron (R = 12.0).

tribution of the centers of the spots and then use a Voronoi
tessellation to approximate the patterns with polyhedrons.
Finally, we discuss the basic properties and varieties of the
polyhedron structures. Systematic classification of Turing
pattern on the spherical surface is not carried out so that
it is not clear how initial condition dependence and system
size dependence affect the patterns.

2. Model
We considered the following Turing system [4, 6] con-

sisting of concentrations of activator and inhibitor u and v,
respectively:

∂u

∂t
= Dδ∇2u + αu(1 − r1v

2) + v(1 − r2u), (1)

∂v

∂t
= δ∇2v + β

(
1 + αr1

β
uv

)
+ u(γ + r2v), (2)

where δ is the diffusion coefficient of v and D is the ratio of
the diffusion coefficient of u to that of v. The prameters α,
β, γ , r1, and r2 are for the chemical reactions. According
to Turing [1], a difference in the diffusion constant between
two chemical species produces a nonuniform pattern. In
this study, D is taken to be smaller than 1, so that the
chemical species corresponding to u diffuses slower than
does the other species. The parameter δ is the characteristic
diffusion constant.

We introduced new parameter R, defined from δ as δ =
1/R2. The parameter R corresponds to the system size,
that is, the scaled radius of the sphere. If we scale Eqs.
(1) and (2) with the substitutions x → Rx , y → Ry, and
z → Rz, the characteristic diffusion constant changes from
δ to δ/R2. Therefore, an increase in δ corresponds to a
decrease in the squared radius of the sphere. For this reason,
we used the following equations instead of Eqs. (1) and (2):

∂u

∂t
= D

R2
∇2u + αu(1 − r1v

2) + v(1 − r2u), (3)

∂v

∂t
= 1

R2
∇2v + βv

(
1 + αr1

β
uv

)
+ u(γ + r2v). (4)

The method of that we used for our numerical simulation is
summarized as follows: We used the fourth-order Runge-
Kutta scheme. At the beginning of each simulation, the
values of u and v were randomly allocated. The initial
values were obtained from a uniform random generator and
ranged from 0.0 to 0.005. We used “random()” function for
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Fig. 2. An example of numerical solutions of u and v when R = 12.0.

standard C language library as random number generator.
The period of the pseudo random number generation is
estimated to 16(231 − 1). The values of u and v at the same
grid point were not correlated. The increase in time at each
step was chosen to be �t = 0.01. All simulations were
carried out until the time t reached t = 3, 200. For each
value of R, we repeated the simulation ten times, each with
a different seed.

We used a geodesic grid [13] for the numerical simula-
tions. This grid was obtained from a triangular division of
each face of a dodecahedron that was centered at the origin
of the coordinates. All grid points were rescaled so that the
distances of the grid points from the origin were all equal
to unity. Therefore, the resolution of space was almost the
same everywhere on the surface, and there was no singular-
ity. We used a grid consisting of 2,562 vertices generated
from the sixteen divisions of the edges of the dodecahedron.

We chose the values of the parameters of Eqs. (3) and
(4) as follows: D = 0.516, r1 = 0.02, r2 = 0.20, α =
0.899, β = −0.91, and γ = −0.899. These values were
same as were used in one of the conditions of a previous
study [4]. It is known that a pattern of spots arises when
these parameter values are used. Note that our method of
analysis, a polyhedron approximation, can be applied only
to a spotted pattern.

We approximated the patterns of the numerical results to
a frame structure that can be considered to be the edges
of a convex polyhedron. The procedure for obtaining the
approximating polyhedron is as follows: First, we binarized
the values of v according to an appropriate threshold value;
values greater than or equal to the threshold value were set
to one, and those less than it were set to zero. As we will
discuss below, the grid points assigned zero form spots.
We calculated the center of each spot, and then we used
these centers to carry out the Voronoi tessellation on the
spherical surface [11, 12]. Finally, in order to construct the
approximating polyhedron, we replaced the boundaries of
the tessellation, which were arcs of great circles, with lines.
Figure 1 shows an example of the correspondence between
the binarized data and the approximating polyhedron. In
this example, the number of spots was six, and the spot
pattern was approximated as the frame of a cube.

We also considered the Coulomb energy and the
Coulomb angle mentioned by Erber and Hockley [10]. Both
of them characterize the distributions of points on a sphere.
In order to calculate them, we used the centers of the spots
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Fig. 3. Approximated polyhedrons for R = 8.6 with different initial conditions.
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Fig. 4. Dependence of the number of spots on the relative radius.

Fig. 5. Examples of numerical solutions rescaled in order to be proportional to R. From left to right, the images correspond to R = 6, 8, and 10.

that were obtained during the approximation procedure.
The Coulomb energy E is defined by

E =
n−1∑
i=1

n∑
j=i+1

1

|ri − r j | , (5)

where ri is the position vector of the i-th center, and n is
number of points on the sphere. The Coulomb angle is
the minimum angular separation between pairs of points.
The value is determined as the smallest value among the
arccosines of the inner products of all pairs of points.

3. Results
The patterns of both u and v changed with time from

the initial state and finally reached stable states. The ini-

tial random pattern changed gradually to a stripped pat-
tern, the stripes collapsed, and then spots formed. When R
was larger, stable solutions were reached more rapidly than
when R was smaller. Below, we will discuss the patterns at
t = 3, 200, by which time all solutions were considered to
be stable.

Figure 2 shows an example of Turing patterns on a spher-
ical surface for R = 12.0. These patterns were obtained as
stable solutions of u and v. The result are represented by a
gray scale. The values are scaled according to a linear trans-
formation for which the minimum value (zero) is black, and
the maximum value (one) is white. The spherical surfaces
were divided into polygons obtained from the Voronoi tes-
sellation of the grid points. Each polygon was colored ac-



4 T. Yoshino

n = 4 n = 5 n = 7 n = 8

n = 9 n = 10 n = 11 n = 12

n = 13 n = 14 n = 15 n = 16

n = 17 n = 18 n = 19 n = 20

Fig. 6. Representative structures for each of n.

cording to the value of the corresponding grid point. As
shown in Fig. 2, in all cases, u and v were almost comple-
mentary, and so, in the following discussion, we will focus
on the stable patterns of v.

Figure 3 shows the approximating polygons with stable
patterns for R = 8.6 and obtained from four different initial
conditions. The resulting patterns show four different struc-
tures, and these also have different numbers of spots: 7, 8,
and 9. Similar differences with different initial conditions
were frequently observed, especially in cases with larger
values of R. Therefore, we conclude that the structure of
the stable pattern is dependent on the initial conditions. For
this reason, we tried ten simulations for each value of R,
each with a different seed of random number generator.

The number of spots n was also dependent on R. We
let the value of R range from 4 to 15 at intervals of 0.2.
Figure 4 shows the R dependence of n. The value of n
has a tendency to increase with an increase in R. The
approximated curve shown in Fig. 4 was quadratic, and
the formula estimated using the least-squares method was
n = 0.0902R2 + 0.219R − 0.686. Figure 5 shows a com-
parison of the stable patterns obtained using the different
radii, which were proportional to R. For the same values
of the parameters, the radii of the spots were approximately
the same. This supports the conclusion that the relation be-
tween R and n is quadratic.

The approximating polyhedrons revealed in detail struc-
tural properties of the stable patterns. Figure 6 shows rep-
resentative results for each value of n except for n = 6. The

result for n = 6 was shown in Fig. 1. For the representa-
tive structures, we chose the results for which the Coulomb
energy had the smallest values for a given value of n. As n
increases, the structure tends to be more complex and less
ordered. For small values of R, we observed highly ordered
patterns, regular polyhedrons. For n = 4, 6, and 12, the
Platonic polyhedrons [14] were observed. We did not ob-
serve an octahedron (n = 8) or an icosahedron (n = 20).
When n = 8, we observed a shape that was slightly dif-
ferent from an octahedron. Prisms, another kind of ordered
structure, were observed for n = 5, 6, and 7. Other types
of regular polyhedrons, such as Archimedes polyhedrons,
were not observed.

Both the total number of vertices and the degrees of the
vertices were dependent on n. When n was small, regular
triangles and regular squares were frequently observed. On
the other hand, when n was large, pentagons and hexagons
were common. In many cases, they were almost equilateral
or almost equiangular; however, irregular polygons were
observed in some cases. A vertex of degree three was
dominant in all cases except for a few cases with large R.
In such cases, a vertex of degree four was observed.

Table 1 shows a summary of the basic properties of the
representative results: the number of polygons; the num-
ber of i-gons for i = 3, 4, 5, and 6; the Coulomb energy;
the Coulomb angle; the structural property of the polyhe-
dron; and the number of other structures. We introduce
the Schoenflies notation in order to summarize the sym-
metry properties of the various polyhedrons, and this is
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Table 1. Summary of structural properties of representative patterns.

n n3 n4 n5 n6 Coulomb energy Coulomb angle (rad.) Group SD Other structures

4 4 0 0 0 3.674 1.901 Td same 0

5 2 3 0 0 6.474 1.565 C3h same 0

6 0 6 0 0 9.986 1.550 Oh same 0

7 0 5 2 0 14.454 1.252 C5h same 0

8 0 8 0 0 19.676 1.241 D4d same 1

9 0 3 6 0 25.762 1.193 D2h same 1

10 0 2 8 0 32.724 1.103 D4d same 0

11 0 2 8 1 40.612 1.005 C2v same 0

12 0 0 12 0 49.167 1.096 Ih same 0

13 0 2 10 1 58.868 0.863 C2v same 1

14 0 0 12 2 69.317 0.912 D3d same 0

15 0 0 12 3 80.680 0.847 D3h different 1

16 0 0 12 4 92.920 0.839 C3v different 1

17 0 1 10 6 106.073 0.813 C2v different 3

18 0 0 16 2 120.377 0.774 C2v different 3

19 0 0 12 7 135.135 0.754 E different 9

20 0 0 16 4 150.923 0.787 D4h same 4

listed in the “Group” column. We also include a compari-
son with the structure of the approximating polyhedron that
was obtained from using the steepest descent method for
the charged particles on a sphere, interacting through the
Coulomb potential [12] in the “SD” column. We added
short explanation of the steepest descent method in Ap-
pendix. Each row shows the values and representative re-
sults for each value of n. When n was large, different struc-
tures were observed for the same value of n. For this reason,
we included a column titled “Other structures” in which
we list the number of other structures observed. As men-
tioned above, we chose as representative the structure that
had the smallest Coulomb energy. These also had the largest
Coulomb angles. According to Euler’s polyhedron theory,
n5 is twelve if all the vertices are of degree three, and the
faces are pentagons and hexagons. The values of n5 for
n = 18 and 20 were not twelve because there were vertices
of degree four.

Both the Coulomb energies and the Coulomb angles of
the representative structures were almost same as those with
the optimized distribution of points on a sphere. In all
cases, the differences were about 0.1% for the Coulomb
energy and about 2% for the Coulomb angle. The values
of the representative structures were greater than those of
the optimized spherical point distributions for the Coulomb
energies, but the reverse was true for the Coulomb angles.

The group theoretical notation of the structure shows that
there is a tendency to lose structural order as n increases.
For values of n from 15 to 19, structural similarities were
not observed between these polyhedrons and those obtained
from the optimized points. For n = 20, structural similarity
is observed again.

4. Discussion
Polyhedron approximation is an effective method for rec-

ognizing the structural properties of the distribution of spots
on the sphere. Our analysis revealed that the distribution of

spots is ordered, and it is highly dependent both on R and
on the initial conditions. On the other hands, the disadvan-
tage of this method is that the result is qualitative, and thus
we cannot discuss the structural properties using numeri-
cal data. For example, we are unable to determine whether
an obtained structure is optimized. In order to determine
this, we have to introduce the qualitative criteria such as
Coulomb energy and the Coulomb angle.

Although the obtained distributions of the centers of the
spots were not optimized, the polyhedron structures never-
theless seemed to be sufficiently ordered. There were dif-
ferences between the values of both the Coulomb energies
and the Coulomb angles, and the values of these obtained
using the method of the SD. In all cases, the values of the
Coulomb energy of the spot patterns were larger than those
of the spherical points from the SD, and the values of the
Coulomb angles of the spot patterns were larger than those
of the SD. This implies that the distribution of the centers is
well ordered but is not optimized. Furthermore, the struc-
tural differences of the number of different structures in the
cases of large R with that obtained from the SD support this
estimation.

Some kind of repulsive effect seems to exist between the
spots. With large values of n, the observed polyhedron
structures were not symmetric, and this differs from what
was observed with the coulomb interaction. The variety of
structures observed for large values of n are thought to be
due to the absence of an ordered configuration on the sphere
itself and to an interacting effect between the spots.

The introduction of group theoretical notation is useful
for classification of the spot patterns on a sphere. This is
because we cannot see the whole area from any viewpoint.
The notation enables us to summarize the properties of the
patterns.

The reason there is a variety of skeletal structures for
spherical radiolaria is that the stable patterns depend on
both R and the initial conditions; their shapes depend on
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their radii and the initial concentrations of the key chemical
species. Slight differences in R or the initial conditions
can result in different patterns of spots and different skeletal
structures of spherical radiolaria.
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Appendix A.
The steepest descend (SD) is widely used for optimiza-

tion problem. This method brings us the local minimum
configuration of the variables. The procedure uses the
forces acting on the points on a sphere. We denote the po-
sition of the i-th point ri = (xi , yi , zi ). A repulsive force
acting on the i-th point Fi is calculated by,

Fi = −∇i E,

where ∇i ≡ (∂/∂xi , ∂/∂yi , ∂/∂zi ) and E is defined in
Eq. (5). In the steepest descent method, the variables are
changed in accordance with the force to minimize the po-
tential. After enough repeat of the changes, the points reach
static configuration which locally minimize its potential en-
ergy. The detailed description is found in Yoshino [12].
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