
Original Paper Forma, 32, 7–17, 2017

Dominant Axis Theorem and the Area Preserving Lozi Map

Yoshihiro Yamaguchi1∗ and Kiyotaka Tanikawa2

1Teikyo Heisei University, Ichihara, Chiba 290-0193, Japan
2National Astronomical Observatory, Mitaka, Tokyo 181-8588, Japan

∗E-mail address: chaosfractal@iCloud.com

(Received June 19, 2017; Accepted September 23, 2017)

In the family of the area preserving Hénon maps (the Hénon maps), the mapping function is quadratic.
Replacing the quadratic function with a piecewise linear function, we obtain the area preserving Lozi map (the
Lozi map). For the Hénon map, the elliptic periodic orbits appearing through rotation bifurcation of the elliptic
fixed point have one orbital point on the particular axis, i.e., the dominant axis. Thus, the dominant axis theorem
holds for the Hénon map. For the Lozi map, the dominant axis theorem does not hold. We make clear the reasons
from the study of bifurcations. For the Lozi map, a new theorem instead of the dominant axis theorem is obtained.
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1. Introduction
Greene (Greene, 1979), in the standard map, took a

branch of the symmetry axes and called it the dominant
axis. He found numerically that particular symmetric el-
liptic orbits have one of the orbital points on the dominant
axis. Since then, the result is called the dominant axis hy-
pothesis. The hypothesis has been confirmed to be true in
the standard map (MacKay and Meiss, 1983). Recently, it
has been shown to be true in other mapping systems such as
the connecting map (Dulling et al., 2005; Yamaguchi and
Tanikawa, 2016). In the present paper, we will show that
the dominant axis theorem does not hold for the Lozi map
(Lozi, 1978; Elhadj, 2013) in some parameter ranges by
studying the bifurcations. We give a new theorem instead
of the dominant axis theorem. In doing this, we develop
a new geometrical method to determine the stability of the
symmetric periodic orbits.

The dominant axis theorem is proper to reversible dy-
namical systems. So, we first introduce the reversible maps.
We consider the area preserving map

T : yn+1 = yn + f (xn), xn+1 = xn + yn+1, (1)

with some function f (x). For f (x) = fH (x) = a(x −
x2) (a ≥ 0), we name T the connecting map included in
the Hénon family (Hénon, 1976). Here the connecting map
connects integrable and horseshoe maps (Yamaguchi and
Tanikawa, 2016).

The map T is represented as T = h ◦ g, where h ◦ h =
g ◦ g = id, and det∇h = det∇g = −1. Two maps g and
h are called the involutions. If, in general, a map is written
as a product of involutions, the map is said to be reversible
or to have reversibility in the sense of Birkhoff (Birkhoff,
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1966). Here, g and h have the following concrete form.

g

(
x
y

)
=

(
x

−y − f (x)

)
, h

(
x
y

)
=

(
x − y
−y

)
.

(2)

The set of the fixed points of involution is the symmetry
axis. Let Sg and Sh be the symmetry axes of involutions g
and h.

Here, we define symmetric periodic orbits and introduce
the dominant axis theorem.

Definition 1 (Symmetric periodic orbit). The symmetric
periodic orbit has two orbital points on the symmetry axes.

Let p/q be an irreducible fraction satisfying the condi-
tions 0 < p/q ≤ 1/2. In the following theorem, p/q-BE
and p/q-BS are monotone symmetric periodic orbits of ro-
tation number p/q. These will be introduced in Subsec. 2.1.

Theorem 2 (Dominant axis theorem). For the Hénon map,
a p/q-BE has one orbital point on the dominant axis S+

g
(see Fig. 1 and Eq. (4)) at a > ac(p/q). Therefore, p/q-
BE’s for all p/q have one of their orbital points on the
dominant axis S+

g at a > ac(1/2).

Theorem 2 implies that p/q-BS does not have its orbital
point on S+

g because orbital points of the p/q-BE and p/q-
BS alternately surround fixed point Q. This is a strong
restriction for p/q-BS.

Here, we give remarks for Theorem 2. In the standard
map, once a becomes positive, p/q-BE of every rational
number p/q appears and it has one orbital point on the dom-
inant axis. On the other hand, p/q-BE appears through the
rotation bifurcation of Q in the connecting map. Therefore,
the condition for a is needed in Theorem 2. For the con-
necting map, ac(1/2) = 4 holds.

The dominant axis theorem plays an important role in
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various occasions such as the study of disintegration of the
invariant curves (Greene, 1979), structure of the intersec-
tion of the stable and unstable manifolds of the saddle fixed
point (Yamaguchi and Tanikawa, 2001), and construction of
the resonance regions (Yamaguchi and Tanikawa, 2009).

In the present paper, we take f (x) = fL(x) = (a/2)(1−
|2x−1|) for a ≥ 0. This is called the Lozi map (Lozi, 1978).
The map is a piecewise linear version of the connecting map
with f (x) = fH (x). For a > 0, we have fL(0) = fL(1) =
fH (0) = fH (1) = 0. We also have f ′

L(0) = f ′
H (0) = a

and f ′
L(1) = f ′

H (1) = −a, where the prime denotes the
differentiation with respect to the argument, and f ′(0), say,
is the slope of function f (x) at x = 0. The connecting maps
and Lozi maps have fixed points P = (0, 0) and Q = (1, 0)

for a > 0.
The fixed point P is a saddle with eigenvalues λ± where

0 < λ− < 1 < λ+. For 0 < a < 4, Q is an elliptic fixed
point with complex eigenvalues. At a = 4, Q undergoes
period doubling bifurcation. At a > 4, Q is a saddle with
reflection with eigenvalues λ− < −1 < λ+ < 0.

The Smale horseshoe exists at a ≥ 5.176605 . . . (Yam-
aguchi and Tanikawa, 2009) for the connecting maps, while
at a ≥ aSH

c = 4.229981 . . . for the Lozi map. In the
Lozi map, the mapping function fL(x) has a break point
at x = 1/2. As a result, the stable manifold Ws and the un-
stable manifold Wu of P have the break points (see Fig. 1).
Using the break point, the critical value aSH

c is determined
analytically (see Appendix A).

The properties of the horseshoe are discussed in Guck-
enheimer and Holmes (1983), Gilmore and Lefranc (2002),
and Yamaguchi and Tanikawa (2016).

Section 2 is for preparations. We summarize the bifurca-
tions used in this paper and define the dominant axis for T q

for q ≥ 1. In Sec. 3, we study the bifurcations in the Lozi
map. It is shown that the dominant axis theorem does not
hold for the Lozi map. In Sec. 4, a new theorem is obtained.
In Sec. 5, we give concluding remarks.

2. Mathematical Tools
2.1 Bifurcations

We explain several known terms used in this paper. If
the eigenvalues of the linearized matrix are complex, we
call the corresponding periodic orbit “the elliptic periodic
orbit with complex eigenvalues”. In the following argument
the cases with λ = ±1 are treated as those with complex
eigenvalues for convenience.

If the eigenvalues satisfy relations λ− < −1 < λ+ < 0,
we call the corresponding periodic orbit “the saddle peri-
odic orbit with reflection”. The elliptic periodic orbit with
complex eigenvalues and the saddle periodic orbit with re-
flection will together be called “elliptic” in the present re-
port. If the eigenvalues satisfy relations 0 < λ− < 1 < λ+,
we call this periodic orbit a “saddle” as usual.

In this paper, we use the three bifurcations named rota-
tion bifurcation, period doubling bifurcation and equiperiod
bifurcation. In the following, we summarize them.

(i) Rotation bifurcation. If the average rotation rate, i.e.,
rotation number, around elliptic fixed point Q becomes
an irreducible fraction p/q satisfying the conditions 0 <

Fig. 1. The branches of symmetry axes S+
g , S−

g , S+
h , and S−

h are displayed
at a = 3. The intersection points of symmetry axes are the fixed points
P and Q. The stable manifold Ws and the unstable manifold Wu of the
saddle fixed point P are also illustrated.

p/q < 1/2, a pair of elliptic and saddle periodic orbits
are born. We call this the rotation bifurcation of Q. Bi-
furcation parameter value is a = ac(p/q) = 4 sin2(πp/q).
We denote the elliptic orbit by p/q-BE, and the saddle or-
bit by p/q-BS. Here, E in BE stands for “elliptic”, S in
BS for “saddle”, and B in BE and BS for “Birkhoff”. The
“Birkhoff” comes from mathematician’s name who studied
the order-preservation property of orbits (Birkhoff, 1966).
These are symmetric periodic orbits.

(ii) Period doubling bifurcation. The elliptic periodic or-
bit undergoes period doubling bifurcation if its eigenvalues
arrive at λ = −1 on the complex eigenvalue space. Af-
ter period doubling bifurcation, the mother orbit becomes a
saddle with reflection. A daughter periodic orbit with twice
the period appears from the mother point and is elliptic with
complex eigenvalues just after the appearance.

(iii) Equiperiod bifurcation. The elliptic periodic orbit
undergoes equiperiod bifurcation if its eigenvalues arrive
at λ = +1 on the complex eigenvalue space. After the
equiperiod bifurcation, the mother orbit becomes a saddle.
Two daughter periodic orbits of the same period appear
from the mother point and are elliptic with complex eigen-
values just after the appearance.
2.2 Involutions and symmetry axes for T

The Lozi map T is reversible. The set of the fixed points
of involution is the symmetry axis. We give the representa-
tions of the symmetry axes Sg and Sh .

Sg : y = − f (x)/2, Sh : y = 0. (3)

Here, we also define the branches of symmetry axes.

S+
g : y = − f (x)/2 (x ≥ 1), S−

g : y = − f (x)/2 (x < 1).

(4)
S+

h : y = 0 (x ≥ 1), S−
h : y = 0 (x < 1). (5)

Here, S+
g is conventionally called the dominant axis

(Dulling et al., 2005). The symmetry axes and the stable
and unstable manifolds of P are displayed in Fig. 1.
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Fig. 2. (a) This figure represents the relation between the subdominant axis T S−
h and its image gT S−

h at a = 3.3 > ac(1/3) = 3. The intersection
point z is an orbital point of 1/3-BE. The relation u1 = gu0 holds. (b) This figure represents the relation between the subdominant axis T 2 S−

h and its

image gT 2 S−
h at a = (

√
5 + 1)/2 + 0.2 = 1.818033 . . .. The intersection point z is an orbital point of 1/5-BE.

From Definition 1 and Theorem 2, the branches of sym-
metry axes on which p/q-BE(BS) has a point are deter-
mined. The results are summarized as Property 3 (Yam-
aguchi and Tanikawa, 2009).

Property 3.
(i) If q and p are odd, then p/q-BE has one orbital point on
S+

g and another on S−
h , while p/q-BS has one orbital point

on S−
g and another on S+

h .
(ii) If q is odd and p is even, then p/q-BE has one orbital
point on S+

g and another on S+
h , while p/q-BS has one

orbital point on S−
g and another on S−

h .
(iii) If q is even and p is odd, then p/q-BE has one orbital
point on S+

g and another on S−
g , while p/q-BS has one

orbital point on S+
h and another on S−

h .

From now, we discuss the properties of involutions. Sup-
pose that curve y = G(x) intersects Sg at z = (x, y). Let
ξ(z) = dG(x)/dx be the slope of the curve at z. Operating
g to this curve, we obtain the image curve.

y = −G(x) − f (x). (6)

Let ξg(z) = dy/dx be the slope of the image curve at z. We
obtain the relation

ξg(z) = −ξ(z) − f ′(x) (7)

where f ′(x) = d f (x)/dx . There are two situations in
which ξg(z) and ξ(z) coincide at z ∈ Sg . In the first case,
both ξg(z) and ξ(z) diverge. In the second case, the relations
ξ(z) = ξg(z) = − f ′(x)/2 hold where − f ′(x)/2 is the
slope of Sg at z.

Next, suppose that the curve represented by y = H(x)

intersects Sh at w = (x, 0). Let η(w) = d H(x)/dx be the
slope of the curve at w. Operating h to this curve, we have
h H(x).

y = −H(x − y). (8)

z z

Fig. 3. Two types of the intersection of the dominant axis and the subdom-
inant axis. (a) SR-Type (abbreviation of saddle with reflection) where
ξ(z) < ξD(z) holds. (b) ES-Type (abbreviation of elliptic or saddle)
where ξ(z) > ξD(z) holds. This type includes the situation that the
slope of the subdominant axis diverges.

Let ηh(w) = dy/dx be the slope of h H(x) at w. We obtain
the relation

ηh(w) = η(w)

η(w) − 1
. (9)

There exists the situation that the function H(x) and its
image h H(x) are tangent at w ∈ Sh . At the tangency
situation, the following relations hold.

η(w) = ηh(w) = 0 or η(w) = ηh(w) = 2. (10)

2.3 Involutions and symmetry axes for T q

Mapping T q is also reversible. In fact, it can be repre-
sented by a product of two involutions. Here let us define
the subdominant axis which makes a pair with the dominant
axis.

Definition 4 (Subdominant axis). Mapping T q (q ≥ 1) is
represented as follows.

T q = T q−1h ◦ g. (11)
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Fig. 4. (a) At a < aex
c (p/q), ArcA of the subdominant axis and the dominant axis S+

g intersect at z. The intersection is of ES-Type. (b) At a = aex
c (p/q),

the relation t = z ∈ S+
g holds. This situation represents the situation of the exchange bifurcation. (c) At a > aex

c (p/q), ArcB of the subdominant
axis and the dominant axis S+

g intersects at z. The intersection is of SR-Type.

Here, T q−1h is an involution. The corresponding symmetry
axis is named the subdominant axis, and is denoted by
ST q−1h .

We have two representations for the subdominant axis
depending on the parity of q .

ST q−1h = T k Sh for q = 2k + 1 (k ≥ 1), (12)

ST q−1h = T k Sg for q = 2k (k ≥ 1). (13)

Operating g on the subdominant axis is equivalent to op-
erating T −q on it. Suppose that the dominant and subdom-
inant axes intersect at point z = (x, y) other than Q. Let
the slopes of the subdominant axis and its image gST q−1h at
z be ξ(z) and ξg(z). For them, Eq. (7) holds.

Let us study the relation between ξ(z) and ξg(z) for q =
3. In this case, the subdominant axis is T S−

h . Point z is the
intersection of S+

g and T S−
h , and is an orbital point of the

1/3-BE. We put a = 3.3 > ac(1/3) = 4 sin2(π/3) = 3. In
Fig. 2(a), the relation of T S−

h and gT S−
h is displayed. For

a point u0 ∈ T S−
h , we have u1 = gu0 = T −3u0 and u0 =

gu1 = T −3u1. Thus, u0 and u1 are the orbital points of the
daughter periodic orbit appearing through period doubling
bifurcation of z. The period of the daughter orbit is 6. The
slope ξ(z) of the subdominant axis and the slope ξg(z) of
gT S−1

h satisfy the relation ξ(z) < ξg(z).
Next, we consider the case q = 5 (Fig. 2(b)). The

subdominant axis T 2S−
h and the dominant axis intersect at

the orbital point z of 1/5-BE. We see T 2S−
h and its image

gT 2S−
h in the figure. There are no other intersection points

around z. Slopes ξ(z) and ξg(z) of the subdominant axis
and of gT 2S−1

h satisfy relation ξ(z) > ξg(z). This means
that z is an elliptic point with complex eigenvalues, or a
saddle point. From the results mentioned above, we obtain
Proposition 5, which talks about a new geometric method
to determine the appearance of period doubling bifurcation.

Proposition 5. Suppose that subdominant axis ST q−1h and
its image gST q−1h intersect at z. Let ξD(z), ξ(z) and ξg(z),
respectively, be the slopes at z of the dominant axis, the
subdominant axis and its image.
(i) Relations ξ(z) > ξD(z) > ξg(z) hold before period
doubling bifurcation of z.

(ii) Both ξ(z) and ξg(z) diverge at the critical situation of
period doubling bifurcation of z.
(iii) Relations ξ(z) < ξD(z) < ξg(z) hold after period
doubling bifurcation of z.

We classify the intersections of the dominant and sub-
dominant axes into two types (see Fig. 3).

Classification 6. Let z = (x, y) be the intersection point of
the dominant and subdominant axes, and ξD(x) and ξ(x) be
their slopes at z.
(i) SR-Type: relation ξ(x) < ξD(x) holds, and z is a saddle
periodic point with reflection. Abbreviation SR represents
saddle with reflection.
(ii) ES-Type: relation ξ(x) > ξD(x) holds, and z is an ellip-
tic periodic point with complex eigenvalues or a saddle pe-
riodic point. This type includes the case that ξ(x) diverges.
Abbreviation ES represents elliptic or saddle.

We define the exchange bifurcation.

Definition 7 (Exchange bifurcation). Let t be one of the
break points of the piecewise linear subdominant axis, and
z be the intersection point of the dominant axis and the
subdominant axis. Let p/q be the rotation number of the
orbit of z. Suppose that ArcA and ArcB of the subdominant
axis is connected at point t . Suppose there exists a aex

c (p/q)

such that, for a < aex
c (p/q), ArcA intersects the dominant

axis at z with t above S+
g (Fig. 4(a)), at a = aex

c (p/q),
t (= z) is on S+

g (Fig. 4(b)), and for a > aex
c (p/q), ArcB

intersects the dominant axis at z with t below S+
g (Fig. 4(c)).

The stability of z in a < aex
c (p/q) differs from that in

a > aex
c (p/q). We name this bifurcation the exchange

bifurcation. If the exchange bifurcation coincides with the
rotation bifurcation, we treat it as the rotation bifurcation.

Finally, we represent T q as T q = h ◦ gT q−1. We denote
the invariant set of gT q−1 by SgT q−1 . We give the represen-
tations for SgT q−1 .

SgT q−1 = T −k Sg for q = 2k + 1 (k ≥ 1), (14)

SgT q−1 = T −k Sh for q = 2k (k ≥ 1). (15)

Operating h on SgT q−1 is equivalent to operating T q on
SgT q−1 .
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Fig. 5. Bifurcations of 1/3-BE. (a) a = ac(1/3) = 3. The situation at which the rotation bifurcation occurs. (b) a = 3.3. At a > ac(1/3), the
intersection point is of SR-Type and is a saddle with reflection.

Fig. 6. Bifurcations of 1/3-BS. The relation between T −1 S−
h and S+

h is displayed. (a) a = ac(1/3) = 3. The situation at which the rotation bifurcation
occurs. (b) a = 3.3.

2.4 Linear stability analysis
If point z = (x, y) is in x < 1/2, the coefficient matrix

m0 of the linearized system at z is given by

m0 =
(

1 a
1 1 + a

)
, (16)

while if z = (x, y) is in x > 1/2, the matrix m1 at z is given
by

m1 =
(

1 −a
1 1 − a

)
. (17)

Take a periodic orbit {z0 = T zq−1, z1 =
T z0, · · · , zq−1 = T zq−2} of period-q (≥ 2) and sup-
pose that zk (0 ≤ k ≤ q − 2) be in x < 1/2, and zq−1

in x > 1/2. The stability of this orbit is determined by
the eigenvalues of matrix m = m1mq−1

0 . Let r(a) = Tr m
(Trace of m). We obtain the equation to determine the
eigenvalue λ.

λ2 − r(a)λ + 1 = 0. (18)

Using r(a), the stability of periodic orbits is classified into
three types as in Classification 8.
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Fig. 7. Bifurcations of 1/4-BE. (a) a = ac(1/4) = 2. The critical point at which the rotation bifurcation occurs. (b) a = 2.3. At a > ac(1/4), the
intersection type is ES-Type and 1/4-BE is the saddle orbit. (c) a = 2

√
2. The critical point at which the first exchange bifurcation occurs. (d) a = 3.

The intersection type is SR-Type and 1/4-BE is the saddle with reflection.

Classification 8.
(i) r(a) > 2: the periodic orbit is of saddle type.
(ii) |r(a)| ≤ 2: the periodic orbit is of elliptic type with
complex eigenvalues.
(iii) r(a) < −2: the periodic orbit is of saddle type with
reflection.

Note that the residue R defined by Greene (Greene,1979)
is R = (2 − r(a))/4.

3. Analysis of Bifurcations
In the piecewise linear maps, the periodic point is fre-

quently on the break point of the piecewise linear symmetry
axis. In these timings, bifurcations take place discontinu-
ously. In this section, as typical examples, we study the bi-
furcations of 1/3-BE (BS), 1/4-BE (BS) and 1/5-BE (BS).
We hope these examples exhaust the types of bifurcation
appearing in the Lozi map.
3.1 Bifurcations for the periodic orbits with rotation

number 1/3
First, we study the bifurcations of 1/3-BE. In this case,

the subdominant axis is T S−
h . At a = ac(1/3) =

4 sin2(π/3) = 3, one piece of T S−
h overlaps the dominant

axis S+
g (Fig. 5(a)). Every point of Arc[Q, z1]S+

g
is periodic

with period-3. At the situation of the rotation bifurcation,

the slope of the subdominant axis agrees with that of the
dominant axis (a/2 = 3/2).

At a > 3, there exists intersection point z1 of T S−
h

and S+
g (Fig. 5(b)) where z1 is of SR-Type. Thus, 1/3-

BE is a saddle with reflection for a > 3. This means
that there exists a daughter periodic orbit with period-6 ap-
pearing through period doubling bifurcation of 1/3-BE (see
Fig. 2(a)). The rotation bifurcation, period doubling bifur-
cation and exchange bifurcation occur at the same parame-
ter a = 3.

By Eq. (18), we can confirm the stability of 1/3-BE. Just
after the rotation bifurcation, z0 and z2 are in x < 1/2,
and z1 in x > 1/2 (see Fig. 5(b)), from which we obtain
m = m2

0m1 and

r(a) = −a3 − 2a2 + 3a + 2. (19)

Since r(a) < r(3) = −34 < −2 for a > 3, two eigenvalues
λ± of Eq. (19) satisfy relations λ− < −1 < λ+ < 0
(λ+ = 1/λ−). Thus, 1/3-BS is a saddle with reflection.

Next, we study the stability of 1/3-BS. The situation at
a = 3 is displayed in Fig. 6(a). The piece of T −1S−

h
overlaps S+

h , and the x-coordinate of w0 is x = 1/2. Just
after the rotation bifurcation (see Fig. 6(b)), w0 is in x <

1/2, and w1 and w2 in x > 1. Since w2 = gw1 holds, the
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Fig. 8. Bifurcations of 1/4-BS. (a) a = ac(1/4) = 2. The critical point at which the rotation bifurcation occurs. (b) a = 2.4. Filled squares represent
the daughter periodic points v0 and v1 with period-8 appeared from w2. (c) a = 2.732050 · · ·. The critical point at which the inverse period doubling
bifurcation occurs and the daughter periodic points disappear. (d) a = 2

√
2. The critical point at which the exchange bifurcation occurs.

x-coordinates for w1 and w2 are the same. By the existence
of Q, w2 does not move into x < 1. Thus, for a > 3, w1

and w2 are in x > 1. From the configuration mentioned
above, we obtain m = m0m2

1 and

r(a) = a3 − 2a2 − 3a + 2. (20)

Since r(a) > r(3) = 2 for a > 3, two eigenvalues λ±
satisfy relations 0 < λ− < 1 < λ+. Thus, 1/3-BS is a
saddle. It is noted that the name BE (BS) is consistent with
its stability. The dominant axis theorem holds for 1/3-BE.
3.2 Bifurcations for the periodic orbit with rotation

number 1/4
Here we study the bifurcations for the periodic orbit with

rotation number 1/4. In this case, the subdominant axis is
T 2S−

g . At a = ac(1/4) = 4 sin2(π/4) = 2, a piece of the
subdominant axis overlaps dominant axis S+

g . Every point
of Arc[Q, z2]S+

g
in Fig. 7(a) is periodic with period-4. At

a > 2, there exists intersection point z2 of T 2S−
g and S+

g
(Fig. 7(b)) where z2 is of ES-Type. Just after the rotation
bifurcation, z0 is in x < 1/2 and the other three points are
in x > 1/2. So, we obtain m = m0m3

1 and

r(a) = −a4 + 4a3 − 8a + 2. (21)

1/4-BE is of saddle type just after the rotation bifurcation
since r(2 + ε) = 2 + 8ε − 4ε3 − ε4 > 2 for 0 < ε 	 1.

From Property 3, we have to confirm the stability of 1/4-
BS which has the orbital points on S+

h and on S−
h . This situ-

ation at the rotation bifurcation is displayed in Fig. 8(a). Af-
ter the situation of the rotation bifurcation (see Figs. 8(b)–
(d)), the orbital points w0 and w3 are in x < 1/2, and w1

and w2 in x > 1/2. Therefore, we obtain m = m2
0m2

1 and

r(a) = a4 − 8a2 + 2. (22)

Since r(2) = −14 < −2 and r(a) > r(2) for a > 2,
1/4-BS is a saddle with reflection just after the rotation bi-
furcation. 1/4-BS undergoes the inverse period doubling
bifurcation at a = 2.732050 · · · which is the solution of
r(a) = −2, and it becomes elliptic with complex eigenval-
ues.

In Figs. 8(a)–(d), thick lines represent T −2S±
h , and thin

ones hT −2S±
h . In Figs. 8(a) and (c), there exists the overlap

interval of T −2S±
h and hT −2S±

h . The slope of the overlap
interval including Q in Fig. 8(a) is zero and that including
w2 in Fig. 8(c) is 2 (see Eq. (10)).

In Fig. 8(b), two intersection points v0 and v1 of thick
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a

Fig. 9. Summary of the bifurcations for 1/4-BE.

and thin arcs exist in the vicinity of w2. We remark that
v1 = hv0, v1 = T 4v0 and v0 = T 4v1. Thus, the period of
these daughter points is 8. The points v0 and v1 bifurcate
from w2. The inverse period doubling bifurcation of w2

happens in the passage from Fig. 8(b) to Fig. 8(c). The
daughter periodic orbit with period-8 appearing at a = 2
is absorbed into 1/4-BS at a = 2.732050 · · ·. This is the
meaning of the inverse period doubling bifurcation.

The equiperiod bifurcation occurs at a = 2
√

2 which
is the solution of r(a) = 2 (see Eq. (22)). This critical
value is equal to that of the exchange bifurcation. For 1/4-
BE and 1/4-BS, the stability exchange occurs at a = 2

√
2

(Tanikawa and Yamaguchi, 2001). As a result, at a > 2
√

2,
1/4-BE is of elliptic type (see Fig. 7(d)) and 1/4-BS is of
saddle type. The inconsistency of names for 1/4-BE and
1/4-BS is dissolved.

Here, we discuss the exchange of stabilities at a = 2
√

2
(see Figs. 7(c) and 8(d)). Two daughter saddle periodic or-
bits are born from 1/4-BE, and two daughter elliptic peri-
odic orbits are born from 1/4-BS. These four periodic orbits
are non-symmetric. At a ≥ aSH

c , the horseshoe exists in
the Lozi map. In the horseshoe, there is no non-symmetric
periodic orbits with period-4 (see Appendix B). This means
the disappearance of non-symmetric periodic orbits at some
stage.

For 1/4-BE, the exchange bifurcation occurs once. The
bifurcations of 1/4-BE are summarized in Fig. 9. The dom-
inant axis theorem does not hold for 1/4-BE.
3.3 Bifurcations for the periodic orbit with rotation

number 1/5
We study the bifurcations for 1/5-BE. In this case,

the subdominant axis is T 2S−
h . At a = ac(1/5) =

4 sin2(π/5) = (5 − √
5)/2, a piece of the subdominant

axis overlaps dominant axis S+
g (Fig. 10(a)). Every point

of Arc[Q, z2]S+
g

in Fig. 10(a) is periodic with period-5. At
a > ac(1/5), there exists the intersection point z2 of T 2S−

h
and S+

g (Fig. 10(b)). Point z2 is of SR-Type. This means
that 1/5-BE is a saddle with reflection. This fact implies
that the period doubling bifurcation of 1/5-BE also happens
at a = ac(1/5) and the daughter periodic orbit with period-

10 exists around 1/5-BE.
The second break point (counting from zero at Q) in

the subdominant axis stays above the dominant axis and it
approaches the dominant axis as a increases. At a = (

√
5+

1)/2, the slope of the piece of subdominant axis which
intersects the dominant axis at z2 diverges (see Fig. 10(c)).
In this case, z0 and z4 are in x < 1/2, and the other points
are in x > 1/2. Then, we obtain m = m2

0m3
1 and

r(a) = −a5 + 2a4 + 9a3 − 14a2 − 5a + 2. (23)

The critical value is the root of r(a) + 2 = −(a2 − a −
1)(a3 − a2 − 9a + 4) = 0.

At a = (
√

5 + 1)/2, the inverse period doubling bifur-
cation occurs and mother point z2 absorbs the two daughter
periodic points. Just after the inverse period doubling bifur-
cation, mother point z2 is elliptic with complex eigenvalues,
and the intersection of the dominant and subdominant axes
changes to ES-Type.

Next, at a = 1.791287 . . ., the mother point undergoes
the equiperiod bifurcation and two daughter periodic points
appear (see Fig. 10(d)). The critical value is the root of
r(a) = 2. The period of the mother orbit and those of the
daughter orbits are the same. The daughter periodic orbits
are non-symmetric and thus are not displayed in Fig. 10(d).

Finally, the exchange bifurcation of z2 occurs at a =
(
√

21 + 1)/2 (see Fig. 10(e)). At a > (
√

21 + 1)/2, the
intersection of the dominant and subdominant axes is of SR-
Type (see Fig. 10(f)). Thus, the mother orbit is a saddle with
reflection.

We explain how to derive a = (
√

21+1)/2. The image of
y = 0 is y = ax/(a +1). The image of point (1/2, a/(2a +
2)) on y = ax/(a + 1) is a break point represented as

(
a2 + 3a + 1

2a + 2
,

a(a + 2)

2a + 2

)
. (24)

By the condition that the break point is on S+
g , we obtain

a2 − a − 5 = 0. (25)

The root of this equation gives the critical value.
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Fig. 10. Bifurcations of 1/5-BE. (a) a = 4 sin2(π/5). The critical point at which the rotation bifurcation occurs. (b) a = 1.5. The intersection is of
SR-Type, and 1/5-BE is a saddle with reflection. (c) a = (

√
5 + 1)/2. The critical point at which the inverse period doubling bifurcation occurs. (d)

a = 1.791287 · · ·. The critical point at which the equiperiod bifurcation occurs. The intersection is of ES-Type. (e) a = (
√

21 + 1)/2. The critical
situation at which the first exchange bifurcation occurs. (f) a = (

√
21 + 1)/2 + 0.1. The intersection is of SR-Type, and 1/5-BE is a saddle with

reflection.

a

Fig. 11. Summary of the bifurcations for 1/5-BE.

The period doubling bifurcation also occurs at a =
(
√

21 + 1)/2 and the daughter periodic orbit with period-
10 appears. We remark that two non-symmetric periodic
orbits disappear at a = (

√
21 + 1)/2. This is derived from

the fact that there is no non-symmetric periodic orbits with
period-5 in the horseshoe (see Appendix B). The bifurca-
tions of 1/5-BE are summarized in Fig.11. The dominant

axis theorem does not hold for 1/5-BE.
We comment on 1/5-BS. Just after the rotation bifurca-

tion, this orbit is of saddle type. This orbit also experiences
the bifurcations, and it becomes of saddle type after the ex-
change bifurcation. Just after the rotation bifurcation and
after the exchange bifurcation, the name of BE (BS) is con-
sistent with its stability.
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4. A New Theorem
If we increase the number of iterations, the number of

break points of the image of the subdominant axis in-
creases. Thus, the number of times that the exchange bifur-
cations occur also increases. Let us define the critical value
ale

c (p/q) at which the last exchange bifurcation occurs.

Definition 9 (Last exchange bifurcation).
(i) In the case where the exchange bifurcation takes place
plural times, let ale

c (p/q) be the last critical value for which
the exchange bifurcation takes place.
(ii) In the case where the exchange bifurcation takes place
only once at a = aex

c (p/q), we let ale
c (p/q) = aex

c (p/q).
(iii) If the situation of the last exchange bifurcation is that
of the rotation bifurcation, we let ale

c (p/q) = ac(p/q).

We remark that Fig. 7(c) is the example of Definition 9(ii)
and Fig. 5(a) is that of Definition 9(iii).

Next, we prove Proposition 10 which determines the in-
tersection type of S+

g and ST q−1h after the last exchange bi-
furcation.

Proposition 10. At a > ale
c (p/q), the intersection of S+

g
and ST q−1h is of SR-Type.

Proof. At the situation of the last exchange bifurcation, let
zk be the intersection point on S+

g . This point is also the
break point t . There is no break point in Arc[P, t)ST q−1h

.
After the last exchange bifurcation, the break point t moves
to the right region of S+

g . In order that Arc[P, t]ST q−1h

intersects S+
g at zk , the slope of Arc[P, t]ST q−1h

should be
less than that of S+

g (see Figs. 5(b), 7(d), and 10(f)). This
implies the claim. (Q.E.D.)

If the equiperiod bifurcation does not occur at the situa-
tion of ES-Type, the periodic orbit is of elliptic type with
complex eigenvalues. For this case, the dominant axis the-
orem holds. The typical example is 1/3-BE.

For 1/5-BE, just after the rotation bifurcation, the peri-
odic orbit is of elliptic type with complex eigenvalues. But,
the equiperiod bifurcation occurs and the periodic orbit be-
comes the saddle orbit. For 1/4-BE, just after the rotation
bifurcation, the periodic orbit is the saddle. The exchange
of the stability exchange between 1/4-BE and 1/4-BS hap-
pens. Thus, the dominant axis theorem does not hold for
1/4-BE and 1/5-BE. These examples give the reason why
the dominant axis theorem for p/q-BE is not necessarily
true. Therefore, we obtain Result 11.

Result 11. There are two origins that the dominant axis
theorem does not hold.
(i) Occurrence of the equiperiod bifurcation.
(ii) Occurrence of the stability exchange between p/q-BE
and p/q-BS.

Finally, from Proposition 10, we obtain a new theorem
(Theorem 12) which is the restricted version of Theorem 2.

Theorem 12. In the Lozi map, at a > ale
c (p/q), the p/q-

BE with 0 < p/q ≤ 1/2 has the orbital point on the
dominant axis S+

g and it is a saddle with reflection.

Fig. A.1. Completion of the horseshoe. At a = aSH
c = 4.229981 . . ., the

stable manifold Ws and the unstable manifold Wu are tangent at s ∈ Sg .
The break point t0 = T t−1 is the first turning point of the unstable
manifold. The second turning point t1 is not displayed.

5. Conclusion
We summarize our results.

(1) Using the involutions for T q , we give the geometric
method to study the period doubling bifurcation.
(2) We introduce two intersection types, ES-type and SR-
Type. If ES-type appears, p/q-BE is a saddle orbit or an
elliptic orbit with complex eigenvalues, while, if SR-Type
appears, p/q-BE is a saddle with reflection.
(3) We make clear the reason why the dominant axis the-
orem does not hold for the Lozi map, and obtain the new
theorem instead of the dominant axis theorem.

Appendix A.
The initial arc of the unstable manifold Wu starting at P

and extending to the upper-right direction is represented as

y = ξu(0)x (A.1)

where

ξu(0) = −a + √
a2 + 4a

2
. (A.2)

The unstable manifold is piecewise linear. The second piece
of Wu returns back close to P (see Fig. 1). We call this the
lower branch.

Take a point t−1 = (1/2, ξu(0)/2) on Wu . Its image
t0 = T t−1 is the first break and turning back point of Wu .
The next image t1 = T t0 locates on the lower branch, and
is the second turning point. However, it is in x < 0 and
y < 0 and thus is not displayed in Fig. A.1. In Fig. 1 where
the parameter value is smaller, the second and third turning
points of the unstable manifold are observed in x > 0.

Using Eq. (1), we determine the positions of t0 and t1.

t0 =
(

ξu(0) + a + 1

2
,
ξu(0) + a

2

)
, (A.3)
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t1 =
(−a2 − a(ξu(0) − 3) + 2ξu(0) + 1

2
,

−a2 − a(ξu(0) − 2) + ξu(0)

2

)
. (A.4)

The equation representing the lower branch is determined.

y = αx + β, (A.5)

α = a(a + ξu(0) − 1)

a2 + a(ξu(0) − 2) − ξu(0)
, (A.6)

β = −(2a2 + ξ 2
u (0) + a(3ξu(0) − 1))

2(a2 + a(ξu(0) − 2) − ξu(0))
. (A.7)

In Fig. A.1, the unstable manifold and the stable manifold
are tangent at s ∈ Sg . This implies the completion of the
horseshoe. Using the condition that s = (1/2, −a/4) ∈ Sg

locates on the lower branch represented by Eq. (A.5), we
obtain the equation to determine the critical value at which
the horseshoe completes.

−a

4
= α

2
+ β. (A.8)

After a long calculation, the simplified equation to deter-
mine the critical value is derived.

2a3 − 8a2 − a − 4 = 0. (A.9)

Here, Eq. (A.2) for ξu(0) is used. Solving this equation, we
obtain the critical value aSH

c .

aSH
c = (8 + (800 − 30

√
330)1/3 + (10(80 + 3

√
330))1/3)/6

= 4.229981 . . . . (A.10)

Appendix B.
In the horseshoe, orbits are coded uniquely by two sym-

bols 0 and 1 (Gilmore and Lefranc, 2002; Yamaguchi and
Tanikawa, 2016). The word of the minimum period for the
periodic sequence is called a code. Let us consider period-4
and period-5 orbits.

For period-4, there exist three periodic orbits. Their
codes are represented as follows.

0001, 0011, 0111.

Here, the cyclic permutation for codes is permitted. The
first code represents 1/4-BE and the second one 1/4-BS.

These periodic orbits appear through rotation bifurcation of
Q. The third code represents the daughter periodic orbit ap-
pearing through period doubling bifurcation of the period-2
orbit (1/2-BE) with code 01.

There exist six codes with period-5.

00001, 00011, 01101, 01111, 00101, 00111.

Here, the first code represents 1/5-BE, the second one 1/5-
BS, the third one 2/5-BE, and the fourth one 2/5-BS. These
periodic orbits appear through rotation bifurcation of Q.
The last two codes represent the periodic orbits appearing
through saddle-node bifurcation.

Let us consider the time-reversed code. For example, the
time-reversal of s = 00101 is s−1 = 10100. After op-
erating cyclic permutation, 10100 is represented as 00101.
Thus, the relation s = s−1 holds. If the code s satisfies
s = s−1 after cyclic permutation, the code is said to be
symmetric. If the code s is symmetric, the periodic orbit
with code s is symmetric. All codes mentioned above are
symmetric. Therefore, there are no non-symmetric periodic
orbits with period-4 and 5 in the horseshoe. This implies
that non-symmetric periodic orbits with period-4 or 5 disap-
pear before the completion of horseshoe even if they appear
through equiperiod bifurcation.
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