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Determining Parastichy Numbers Using Discrete Fourier Transforms

Riichirou Negishi1∗, Kumiko Sekiguchi1, Yuichi Totsuka2 and Masaya Uchida1

1Saitama Institute of Technology, 1690 Fussaiji, Fukaya, Saitama 369-0293, Japan
2Global Software Co. Ltd., 3-11-10 Kenpuku, Honjo, Saitama 367-0044, Japan

∗E-mail address: negishi@sit.ac.jp

(Received September 21, 2017; Accepted October 31, 2017)

We report a practical method to assign parastichy numbers to spiral patterns formed by sunflower seeds and
pineapple ramenta using a discrete Fourier transform. We designed various simulation models of sunflower seeds
and pineapple ramenta and simulated their point patterns. The parastichy numbers can be directly and accurately
assigned using the discrete Fourier transform method to analyze point patterns even when the parastichy numbers
contain a divergence angle that results in two or more generalized Fibonacci numbers. The presented method can
be applied to extract the structural features of any spiral pattern.
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1. Introduction
Sunflower florets or seeds are arranged in spirals on

the head inflorescence. Spiral arrangements are character-
ized by the number of spirals going clockwise (CW) and
counter-clockwise (CCW), and the spiral number is called
the parastichy number. Around the 18th century, Johannes
Kepler observed that the Fibonacci numbers are common
in plants (Adler et al., 1997). Figure 1 shows the seed
pattern in a sunflower head. When the number of spi-
rals toward the outer rim in Fig. 1 is visually counted, the
parastichy numbers are assigned to be 21/34, 34/55, and
55/89 (CW or CCW). These numbers correspond to Fi-
bonacci numbers (1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, . . . ).
These parastichy numbers have attracted the attention of re-
searchers over many centuries (Vogel, 1979). Sunflower
seed spirals were studied by multiple scientists following
Hofmeister’s (1868) systematic description of a mechanism
of phyllotaxis including spiral formation (Adler et al., 1997;
Mathai and Davis, 1974). Alan Turing sketched seed pat-
terns and studied Fibonacci phyllotaxis (Turing, 1952; Tur-
ing Archive, 1956). Linden (1990) obtained a sunflower-
like spiral formation via the dislodgement model without
using a divergence angle. Dunlap (1997) emphasized the
fundamental properties of Fibonacci numbers and their ap-
plication to the diverse fields of mathematics, computer sci-
ence (Negishi and Sekiguchi, 2007), physics, and biology.
Such spirals and parastichy numbers have also attracted at-
tention in various model systems including laboratory ex-
periments. For example, Douady and Couder (1992) suc-
cessfully obtained Fibonacci spirals with drops of ferrofluid
under the influence of a magnetic field. Spiral structures are
emerging as powerful nanophotonic platforms with distinc-
tive optical properties for multiple engineering applications
(Agrawal et al., 2008; Trevino et al., 2008; Negro et al.,
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2012; Liew et al., 2011). Interestingly, circularly symmetric
scattering resonances in aperiodic spirals can carry orbital
angular momentum (Trevino et al., 2008).

Adler (1974) proposed a theorem to determine the num-
ber sequences for various divergence angles. Jean (2009)
summarized the relationship between the divergence angles
and the number sequences using Adler’s theorem. Table 1
shows the calculated number sequences for various diver-
gence angles using Adler’s theorem. In Table 1, the Fi-
bonacci sequence is denoted by F , the Lucas sequence is
denoted by L , and the generalized Fibonacci sequences are
denoted by G (Koshy, 2001). Two successive numbers can
be related as follows:

lim
n→∞

Gn+1

Gn
→ τ = 1.61803 . . . (1)

For a divergence angle of 137.51◦, which is approxi-
mately equal to the golden angle φτ (137.507764 . . .◦),
the parastichy numbers reflect the Fibonacci sequence (F).
When the divergence angle is 99.50◦, the parastichy num-
bers give the Lucas sequence (L). Generalized Fibonacci
sequences (G) appear for divergence angles such as 77.96◦

and 64.08◦.
Spirals with remarkably different structures can be ob-

tained by choosing only slightly different values for the di-
vergence angle. For example, Fig. 2 shows a simulation of
the point pattern of a sunflower model with a divergence
angle of 137.4◦, which is slightly smaller than the golden
angle (see details in Sec. 2.1). The parastichy numbers in
the outer rim are composed of the Fibonacci number 55 and
the Lucas number 76 (hereafter, they are written as F55
and L76, respectively). In this case, the parastichy num-
bers cannot be calculated using Adler’s theorem. Novel Fi-
bonacci and non-Fibonacci structures in sunflowers have re-
cently been reported in this context (Swinton et al., 2016).
Therefore, a practical method to assign parastichy numbers
to any spiral pattern is needed.

Vogel (1979) was one of the first researchers to develop a
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Table 1. Number sequences for various divergence angles.

Divergence angle Sequences

137.51◦ F, G(1, 2) : 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, . . .

99.50◦ L , G(1, 3) : 1, 3, 4, 7, 11, 18, 29, 47, 76, 123, 199, 322, 521, 843, 1364, . . .

77.96◦ G(1, 4) : 1, 4, 5, 9, 14, 23, 37, 60, 97, 157, 254, 411, 665, 1076, . . .

64.08◦ G(1, 5) : 1, 5, 6, 11, 17, 28, 45, 73, 118, 191, 309, 500, 809, 1309, . . .

54.40◦ G(1, 6) : 1, 6, 7, 13, 20, 33, 53, 86, 139, 225, 364, 589, 953, 1542, . . .

47.25◦ G(1, 7) : 1, 7, 8, 15, 23, 38, 61, 99, 160, 259, 419, 678, 1097, 1775, . . .

151.14◦ G(2, 5) : 2, 5, 7, 12, 19, 31, 50, 81, 131, 212, 343, 555, 898, 1453, . . .

158.15◦ G(2, 7) : 2, 7, 9, 16, 25, 41, 66, 107, 173, 280, 453, 733, 1186, 1919, . . .

55/89
34/55

21/34

Fig. 1. The seed pattern of a sunflower head displaying Fibonacci num-
bers. The black and white lines are counting guides marked on the orig-
inal sunflower.

mathematical spiral model to approximate the complex ar-
rangements of the florets in the sunflower head. However,
Vogel’s spirals lack both translational and orientational
symmetry in real space. Accordingly, the Fourier space of
Vogel’s spirals does not exhibit well-defined Fourier peaks
but shows diffuse circular rings, similar to the electron
diffraction patterns observed in amorphous solids and liq-
uids (Trevino et al., 2008). This suggests that point dis-
tances in a short range are required to analyze spirals. Liew
et al. (2011) applied the Fourier-Bessel transform to un-
derstand the structural complexity of the golden angle spi-
ral. Pennybacker et al. (2015) clarified the relationship be-
tween parastichy numbers and Fourier decompositions in
phyllotactic patterns. We reported a practical method to ob-
tain parastichy numbers using a discrete Fourier transform
focusing on the circular symmetry in Fourier space. Fourier
transforms are widely used to grasp the characteristics of
periodic and aperiodic patterns in natural phenomena and
to analyze crystal structures via X-ray diffraction (Authier,
2001; Kikuta, 2011). We tested our method’s applicability
with sunflower and pineapple models. We applied the dis-
crete Fourier transform to the simulated point patterns of the
models. Parastichy numbers for point patterns with various
divergence angles were examined in detail.

2. Simulation Models
2.1 Sunflower model

For a sunflower model, the point positions can be deter-
mined by the following equation in polar coordinates (r, θ)

55/76

Fig. 2. Simulated point pattern of a sunflower model with a divergence
angle of 137.4◦ and n = 1000.

Fig. 3. Spiral trajectory of a sunflower model.

(Fig. 3):
(r, θ) = (n p, nφ). (2)

Here, n is an integer, p is a constant scaling factor, and
φ is the divergence angle. When n = 1000, p = 0.5, and
φ = φτ , the points form the spiral shape shown in Fig.
4. Dominant parastichy numbers can be visually counted
toward the outer rim as 21/34, 34/55, and 55/89, which
correspond to Fibonacci numbers. The parastichy numbers
vary depending on the values of n, p, and φ, as we will see
later.
2.2 Pineapple model

A pineapple model is expressed by points on the surface
of a cylinder, as shown in Fig. 5. The height l and the argu-
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Fig. 4. Simulated point pattern of a sunflower model with n = 1000,
p = 0.5, and φ = φτ . The black lines are counting guides.

Fig. 5. A pineapple model expressed by points on the surface of a cylinder.

ment angle θ are determined by n, p, and φ. Point positions
on the cylinder for a pineapple model can be generated via
the expression (l, θ) = (n p, nφ). Figure 5 shows point po-
sitions with n = 20, p = 1, and φ = φτ . Figure 6 is the
point pattern developed after the cylinder in Fig. 5 was cut
open along the height direction. For n = 1000, the points
fill a rectangle having a horizontal side of 2π and a vertical
side of l. The points form a series of straight lines in Fig. 6.
The parastichy numbers around the top of the cylinder were
visually counted as 13, 21, 34, and 55, which correspond to
Fibonacci numbers. The parastichy numbers of pineapple
models also vary depending on the values of n, p, and φ.

3. Analysis Procedure Using a Discrete Fourier Trans-
form

3.1 The case of the sunflower model
We presented a method using a discrete Fourier transform

to assign parastichy numbers to sunflower models. The
overall arrangement of seeds on the sunflower head was
a variable spiral structure by the radius position. There-
fore, we focused on the short-range arrangement of the

Fig. 6. Simulated developed point pattern of a pineapple model with
n = 1000, p = 1, and φ = φτ . The dotted rectangle shows a measured
area for counting the parastichy numbers.

Fig. 7. Simulated point pattern in the outer rim of a sunflower model with
n = 1000, p = 0.5, and φ = φτ , showing parastichy numbers of 21/34,
34/55, and 55/89.

seeds (points) at a given radius. Figure 7 shows the sim-
ulated point pattern in the outer rim of the pattern in Fig.
4 with n = 1000, p = 0.5, and φ = φτ . Our assign-
ment method was based on a discrete Fourier transform of
the set of distances from each point to the closest point in
the spiral pattern. A Fourier transform peak position (spa-
tial frequency) corresponded to a parastichy number. The
number of sample points for the discrete Fourier transform
was selected to be a power of 2, i.e., 256 points. First, an
azimuth angle θ for each point was calculated, and the sam-
ple data were arranged in ascending order of their angles.
Then, the distance from each point to the closest point with
a smaller angle was measured, and a dataset was formed.
Using the Wolfram Mathematica software package, a one-
dimensional discrete Fourier transform was applied to the
dataset. Figure 8 shows the absolute value of the Fourier
transform spectra. Due to conjugate symmetry for real se-
quences, the half data range is shown. The same procedure
was applied to the second, third, and fourth closest points.
Finally, the Fourier data were summed from the first closest
to the fourth closest points to obtain a more accurate power
spectrum (Fig. 9).
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Fig. 8. One-dimensional discrete Fourier transform results for the first, second, third, and fourth closest points in a sunflower model with n = 1000,
p = 0.5, φ = φτ , and 256 sample points.

Fig. 9. The Fourier transform result (sum of the data from the first closest points to the fourth closest points in Fig. 8).
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Fig. 10. (a) A simulated point pattern for a sunflower model with φ = 137.45◦ and n = 1000. (b) The Fourier transform result for the area outside the
black circle in panel (a).

In Fig. 9, four large peaks can be seen with spatial fre-
quencies of 21, 34, 55, and 89. These values agreed with the
visually counted parastichy numbers in Fig. 7. This agree-
ment indicated that parastichy numbers could be assigned
using the presented Fourier transform method.
3.2 The case of the pineapple model

The method for a pineapple model was the same as that
for a sunflower model. The number of sample points was
128 points in the dotted rectangle as shown in Fig. 6.

4. Results and Discussion
4.1 Parastichy numbers near the golden angle in sun-

flower models
Parastichy numbers for the golden angle φτ in the sun-

flower model were investigated in Subsec. 3.1 and obtained
using the Fourier transform method. Here we investigated
parastichy numbers near the golden angle φτ for the sun-
flower model. Figure 10(a) is a simulated point pattern for
the case of φ = 137.45◦, which is slightly smaller than
φτ . Interestingly, the points radiated outward in all direc-
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Fig. 11. (a) A simulated point pattern for a sunflower model with φ = 137.55◦ and n = 1000. (b) The Fourier transform result for the area outside the
black circle in panel (a).

Fig. 12. Fourier transform results near the golden angle φτ in sunflower models with n = 1000 showing various parastichy numbers.

Fig. 13. One part of the simulated point pattern in the outer rim of a
sunflower model with p = 0.5 and φ = φτ .

tions. Figure 10(b) shows the Fourier transform result from
the outer rim, showing two large peaks at 55 and 110. The
number 55 was a Fibonacci number, and the number 110
must have been the second harmonic wave of 55. Har-

monic waves seemed to appear as a characteristic feature
of the Fourier transform. Conversely, Fig. 11(a) is the sim-
ulated point pattern for the case of φ = 137.55◦, which was
slightly greater than φτ . Figure 11(b) shows the Fourier
transform result from the outer rim, and the large peaks
were at 34 and 89. These numbers agreed with the paras-
tichy numbers counted visually in the point pattern of Fig.
11(a) and were Fibonacci numbers.

Figure 12 shows the Fourier transform results of chang-
ing the angles from 137.25◦ to 137.75◦ in increments of
0.05◦ with n = 1000 and p = 0.5. Fourier peaks appeared
at 21, 55, and 76 for a divergence angle of 137.35◦. The
numbers 21 and 55 were Fibonacci numbers; however, the
number 76 was a Lucas number. The parastichy numbers
were a mix of Fibonacci numbers and Lucas numbers. In
addition, the spatial frequency of 97 was observed at a di-
vergence angle of 137.30◦. This number, 97, may belong to
the generalized Fibonacci sequence G(1, 4), judging from
Table 1. Even for the slight angle change between 137.25◦

and 137.75◦, spirals could be accurately counted and clas-
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Fig. 14. Fourier transform result for n = 100, 000, p = 0.5, and φ = φτ .

Fig. 15. Fourier transform results showing various spatial frequency (parastichy numbers) when the divergence angles are 47.25◦, 54.40◦, 64.08◦,
77.96◦, 99.50◦, 151.14◦, and 158.15◦.

Fig. 16. (a) Simulated point pattern and (b) the Fourier transform result for a divergence angle of 99.65◦ for the region outside the black circle in panel
(a).
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Fig. 17. (a) Simulated point pattern of a pineapple model with n = 1000, p = 1, and φ = φτ . (b) The Fourier transform result for panel (a).

Fig. 18. (a) Simulated point pattern of a pineapple model with n = 1000, p = 1, and φ = 137.8◦. (b) The Fourier transform result for panel (a).

sified by the parastichy numbers obtained via the presented
Fourier transform method.

We also simulated a point pattern with n = 100, 000,
p = 0.5, and φ = φτ (Fig. 13). When parastichy num-
bers were visually counted from point patterns, there was a
high probability of human counting errors due to the many
packed points. We assigned the parastichy numbers using
the Fourier transform method. The number of sample points
for the Fourier transform was 4096 in the outer rim. Large
Fourier peaks were observed at 610, 987, and 1597 (Fig.
14). These numbers corresponded to Fibonacci numbers.
The results indicated that the presented method enabled us
to measure large parastichy numbers using only a fraction
of the point pattern.
4.2 Parastichy numbers for wide divergence angles in

sunflower models
We investigated the effectiveness of the presented assign-

ment method for various divergence angles as summarized
in Table 1. We simulated the point patterns of sunflower
models with divergence angles of 47.25◦, 54.40◦, 64.08◦,
77.96◦, 99.50◦, 151.14◦, and 158.15◦. The parastichy num-
bers were measured using the discrete Fourier transform
(Fig. 15). All the results agree with those in Table 1. When
the divergence angle was 47.25◦, large Fourier peaks ap-
peared at 38 and 61. These numbers belonged to G(1, 7).
For 54.40◦, Fourier peaks appeared at 20, 33, and 53. These

numbers were included in G(1, 6). In addition, we ex-
amined the parastichy numbers for a divergence angle of
99.65◦, which was slightly larger than the previously inves-
tigated divergence angle of 99.50◦. Even though the angle
difference between 99.50◦ and 99.65◦ was only 0.15◦, the
parastichy numbers could not be inferred from Adler’s the-
orem. The simulated point pattern and the Fourier transform
result are shown in Fig. 16(a). The visually counted paras-
tichy numbers were 47, 65, and 112. The Fourier trans-
form result in Fig. 16(b) reached the same numbers. This
result suggested the effectiveness of the presented Fourier
method, including arbitrary divergence angles that led to
complex non-Fibonacci structures.
4.3 Parastichy numbers in pineapple models

We investigated the parastichy numbers for the pineapple
model (see Subsec. 2.2) using the presented Fourier trans-
form method. We simulated point patterns of the pineapple
model with n = 1000 and p = 1 by changing the diver-
gence angle. Figures 17(a) and 17(b) show the point pat-
tern with φ = φτ and its Fourier transform result. Large
Fourier peaks at 13, 21, 34, and 55 were observed, which
corresponded to the Fibonacci sequence (see also Fig. 6).
Therefore, parastichy numbers on curved surfaces such as
the pineapple model could be found using the presented
Fourier method. In the case of φ = 137.8◦, the Fourier
peaks of 13, 34, and 47 were observed in Fig. 18(b). The
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Fig. 19. Fourier transform results for pineapple models with several divergence angles ranging from 137.1◦ to 137.9◦.

Fig. 20. (a) Simulated point pattern for a sunflower model with n = 1000, p = 0.5, φ = φτ , and 499 sample points. (b) The Fourier transform result
for panel (a).

number 47 was a Lucas number, so the parastichy numbers
were a mix of Fibonacci and Lucas numbers. Figure 19
shows the Fourier transform results as the divergence angles
were changed from 137.1◦ to 137.9◦ by increments of 0.1◦.
We recognized some transitions in the parastichy numbers.
The transition from F21 to F34 occurred near φ = 137.4◦,
and L47 could be obtained for divergence angles greater
than 137.8◦.
4.4 Different sample point numbers

We examined the influence of the sample point num-
ber on the Fourier transform results. Figure 20(a) shows
the simulated point pattern for a sunflower model with
n = 1000, p = 0.5, φ = φτ , and 499 sample points. Fig-
ure 20(b) shows the Fourier transform result. Several high
Fourier peaks at 21, 34, 55, 89, and 144 could be observed.
Compared to the result with 256 sample points in Fig. 9,
we found that there was a remarkable match between them,

except for the power. Note that the sampling window in the
radial direction was larger for the case with more sample
points and more peaks appeared.

5. Summary
We showed that it is possible to directly measure paras-

tichy numbers for point pattern simulations of sunflower
models using one-dimensional discrete Fourier transforms.
The detailed pattern analysis using the Fourier method re-
vealed that the parastichy numbers in general cases were a
mix of Fibonacci, Lucas, and generalized Fibonacci num-
bers. In addition, we demonstrated that it is possible to ac-
curately assign parastichy numbers to curved surfaces such
as those on a pineapple model. We believe that the pre-
sented method can be applied to extract the structural fea-
tures of any spiral.
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