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Visualization of Hydrogen Atomic Orbitals
Classification according to the Node Type
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A three dimensional representation of the probability density distribution of a hydrogen atomic orbital in a
glass block was developed. The density of the dots sculptured in the glass block shows the probability density
of finding an electron, so the nodal plane is well described as spherical shell(s), planar or conical node(s) where
the dots cannot be found. Node types and their numbers are summarized in Table 2. Classification according to
the node type leads to an observation of systematic regularity in hydrogen atomic orbitals. Relationship between
a square of a complex atomic orbital and a real atomic orbital is explained. Advantage of the probability density
sculpture in a spherical glass block is also discussed.
Key words: Electron Cloud, 3-dimensional Representation, Spherical Node, Planar Node Including z axis, Planar
and Conical Node Symmetrical about z axis, Complex Atomic Orbital, Real Atomic Orbital, Probability Density
Distribution

1. Prologue
J. J. Thomson discovered the electron in 1897 [1]. E.

Rutherford discovered the atomic nucleus in 1911. These
epoch-making findings in the history of science led to an
atomic orbit model as a planet around the sun (Fig. 1).

This orbit model had a problem that the line spectrum
emitted from excited hydrogen atoms could not be ex-
plained. N. Bohr solved the problem assuming that the en-
ergies of the electron in a hydrogen atom are quantized,
but the atomic orbit model was incorrect because it was
based on classical mechanics [2]. In 1924, L. de Broglie
proposed that all moving particles such as electrons ex-
hibit wave behavior. E. Schrödinger’s equation, published
in 1926, describes an electron as a wavefunction [3]. Such
a wavefunction, describing a single electron, is called an
“orbital” [4]. Although this concept was mathematically
convenient, it was difficult to visualize. M. Born proposed
that Schrödinger’s wavefunction could be used to calculate
the probability of finding an electron at any given location
around the nucleus [5].

A novel method of visualization to record Born’s proba-
bility densities in a glass block was developed by the use of
a three-dimensional laser technique [6]. This model repre-
sents that the electron may exhibit the properties of both a
wave and a particle [7, 8]. Conventional visualization meth-
ods cannot simultaneously show all the characteristic fea-
tures of an atomic orbital, whereas a real image in a glass
block in the present study allows us to recognize both the
shape of the orbital and its wave character, such as the exis-
tence of spherical, planar and/or conical nodes, at the same
time (Fig. 2).
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Fig. 1. An orbit model of a hydrogen atom.

In this paper, classification of hydrogen atomic orbitals
with their node type was studied using this novel method of
visualization.

2. Complex Hydrogen Atomic Orbitals
The Schrödinger equation (Eq. (1) in Fig. 1) describing

the behavior of an electron in a hydrogen atom takes the
form,

[
− h2

8π2m

(
∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2

)
− k0

e2

r

]
χ = Eχ (1)

where h, m, e, r and k0 are Planck’s constant, the mass of an
electron, the elementary charge, the distance of the electron
from the nucleus and an inverse of the dielectric constant
under a vacuum (permittivity of free space). The atomic
nucleus lies on the origin, and x , y, z are the coordinates
of the electron. A procedure for solving the Schrödinger
equation (Eq. (1)) to get orbital energies E and hydrogen
atomic orbitals χ including complex counterparts Eq. (3) or
real orbitals Eq. (4) is shown in Fig. 3 [9].
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Fig. 2. Several examples of a novel visualization method to record Born’s probability densities in a glass block by the use of a three-dimensional laser
technique: (a): hydrogen 1s, 2s, and 3s orbitals; (b): 2p (z), 3p (z), and 4p (z) orbitals; (c): 3d (3z2 − r2), 4d (3z2 − r2), 5d (3z2 − r2) orbitals; (d):
3d (zx), 4d (zx), 5d (zx) orbitals. Glass size: 4 × 4 × 8 cm.

Schrödinger equation  Eq. (1) 

Orbital energy   Eq. (2) 

 

Complex atomic orbitals  Eq. (3) 

 

Real atomic orbitals   Eq. (4) 

Fig. 3. An outline for solving the Schrödinger equation (Eq. (1)) to get hydrogen atomic orbitals Eq. (3) or (4).

Expanding the Cartesian coordinates (x, y, z) in the
Schrödinger equation (Eq. (1)) into the spherical polar coor-
dinates (r, θ, ϕ) (Fig. 4), the equation can be separated into
functions of each coordinate to give orbital energies En (Eq.
(2)) and atomic orbitals Eq. (3).

En = −13.60

n2
eV (2)

χn,l,m = Rnl(r)�lm(θ)�m(ϕ). (3)

Rnl(r) are called radial distribution functions and
�lm(θ)�m(ϕ) are called spherical harmonics. The
well known real atomic orbitals Eq. (4) are obtained by the
method mentioned in the following section.

χ(x, y, z) (4)

r =
√

x2 + y2 + z2 (5)

z = r cos θ (6)

OQ = r sin θ (7)

y = r sin θ sin ϕ (8)

x = r sin θ cos ϕ. (9)

Subscripts n, l, and m are the principal, azimuthal, and mag-
netic quantum number respectively, which take the follow-
ing values.

n = 1, 2, 3, . . . (10)

l = 0, 1, 2, . . . , n − 1 (11)

m = −l, −l + 1, . . . , 0, . . . , l − 1, l. (12)

Orbitals with azimuthal quantum number l = 0, 1, 2, 3, 4
are designated s, p, d, f, g respectively. The letters then
run alphabetically. The value of principal quantum number
n is written in front of this letter. Table 1 summarizes the
possible values of the quantum numbers l and m for values
of n through n = 4.

Spherical harmonics �lm(θ)�m(ϕ) are functions that all
contain exp(imϕ) where i = √−1. In the case of m �= 0,
these functions are all complex.

3. Real Hydrogen Atomic Orbitals
By taking linear combinations of these complex (expo-

nential) wavefunctions, the well known real atomic orbitals
Eq. (4) are obtained [10–12]. Two examples of five 3d or-
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Table 1. Designation and number of atomic orbitals based on quantum number n, l, and m.

Designation n l    m    Number Total 

1s 1 0    0    1 1 

2s 
2 

0    0    1 
4 

2p 1   -1 0 1   3 

3s 

3 

0    0    1 

9 3p 1   -1 0 1   3 

3d 2  -2 -1 0 1 2  5 

4s 

4 

0    0    1 

16 
4p 1   -1 0 1   3 

4d 2  -2 -1 0 1 2  5 

4f 3 -3 -2 -1 0 1 2 3 7 

Table 2. Nodes in hydrogen atomic orbitals.

Node type Number of nodes

(A) Spherical nodes n − l − 1

(B) Planar and conical nodes symmetrical about z axis l − |m|
(C) Planar nodes containing z axis |m|
Total n − 1

 

Fig. 4. Cartesian coordinates (x, y, z) and spherical polar coordinates
(r, θ, ϕ).

bitals are shown below.

− 1√
2
(χ321 − χ32−1)

= 1
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= 2

81
√

2π
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Using equations Eqs. (6), (8), and (9) in Fig. 4, the spheri-
cal polar coordinates (r, θ, ϕ) in Eq. (13) or (14) are trans-
formed into the Cartesian coordinates (x, y, z) [12, equa-
tions (S13), (S14)]. Using the Cartesian coordinates thus
obtained, these orbitals are called 3d (zx) or 3d (yz). Or-
bital designations in the caption of Fig. 2 have the same
meaning. As is shown below, the polynomials in the paren-
theses are important for the decision of the equation(s) of
nodal plane(s).

4. Types of Nodes in Hydrogen Atomic Orbitals
In the diagram of probability density distribution model,

we can compare the size of the orbitals from their distri-
bution regions (Fig. 2). The density of the dots sculptured
in the glass block shows the probability density of finding
an electron, so the nodal plane is well described as spheri-
cal shell(s) or planar and conical node(s) symmetrical about
z axis where the dots cannot be found. Number of these
nodes together with planar nodes including z axis in hydro-
gen atomic orbitals is summarized in Table 2 in terms of n,
l, and m [13].

There are three types of nodes in hydrogen atomic or-
bitals.

[A] Spherical nodes: In Fig. 2(a), (b), (c), or (d), we
can observe 0 (left), 1 (center), or 2 (right) dark circle(s)
respectively. These circles correspond to spherical nodes.

[B] Planar and conical nodes symmetrical about z axis
(lateral surfaces of right circular cones): In Fig. 2(c), V or
� (reversely V) shaped dark area is observed at left, center,
and right pictures respectively. These are lateral surfaces of
two cones (Fig. 5(b)). In Fig. 2(b), or 2(d), a dark horizontal
line is observed. This can be considered to an utmost limit
that the height (distance from an apex to a base) of a cone
approaches to 0 to give a planar node (Fig. 5(a)).
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(a) (b) (c)

Fig. 5. Nodes in Figs. 2(b), (c) and 6.

[C] Planar nodes containing z axis: In Fig. 2(d) a dark
vertical line is observed. This planar node does not exist in
the complex (exponential) wavefunction (Eq. (2)). By tak-
ing linear combinations of the exponential wavefunctions
having the same n, l, and |m| values, the real atomic or-
bitals Eq. (4) having |m| planar nodes containing z axis are
obtained.

5. Spherical Nodes (Category [A])
In the atomic orbitals χn,l,m = Rnl(r)�lm(θ)�m(ϕ) Eq.

(3), radial distribution function Rnl(r) consists of polyno-
mials of radial vector r . Using a software called “Mathe-
matica (Wolfram Mathematica)” [14], these functions are
conveniently given [15]. Radii of spherical nodes can be
obtained by setting the value of these functions to 0. In the
case of s orbitals, each spherical harmonics �lm(θ)�m(ϕ)

has a constant value of 1/2
√

π . They are therefore indepen-
dent of θ and ϕ, and spherically symmetrical. 1 s orbital has
no node (n = 1, l = 0, n − l − 1 = 0). Radii of spherical
nodes in 2–7s orbitals are given below (1 au = 52.92 pm)
[15]. A spherical node is also called a radial node.

1s: none
2s: 2 au
3s: 1.90192, 7.09808 au
4s: 1.87164, 6.61081, 15.5175 au
5s: 1.85823, 6.42909, 14.3279, 27.3847 au
6s: 1.85109, 6.3389, 13.8325, 25.1972, 42.7803 au
7s: 1.84684, 6.28705, 13.5682, 24.2159, 39.3211,

61.7609 au.
Radii of other spherical nodes, for example in Figs. 2(b),

(c) and (d), are similarly obtained by the same method [14,
15].

6. Planar and Conical Nodes Symmetrical about z axis
(Category [B])

Figures 2(b) and (c), or Fig. 6 shows orbitals having the
same magnetic quantum number of m = 0. Figure 2(b)
shows 2p (z), 3p (z), and 4p (z) orbitals. These orbitals have
the same azimuthal quantum number of l = 1, the number
of the node of category [B] is 1 (l − |m| = 1 − 0 = 1) as is
shown in Fig. 5(a).

Figure 2(c) shows 3d (3z2 − r2), 4d (3z2 − r2), and 5d
(3z2 − r2) orbitals. These orbitals have the same azimuthal
quantum number of l = 2, the number of the node of
category [B] is 2(l − |m| = 2 − 0 = 2) as is shown in
Fig. 5(b).

Figure 6 shows 4f (5z3 − 3zr2), 5f (5z3 − 3zr2), and

Fig. 6. 4f (5z3 − 3zr2), 5f (5z3 − 3zr2), 6f (5z3 − 3zr2).

6f (5z3 − 3zr2) orbitals. These orbitals have the same
azimuthal quantum number of l = 3, the number of the
node of category [B] is 3 (l − |m| = 3 − 0 = 3) as is shown
in Fig. 5(c).

Mathematical formulas of these nodes are obtained from
the numerical expression in the parentheses of each orbital
designation.

In the case of 2p (z), 3p (z), or 4p (z) orbital in Fig. 2(b),
the numerical expression in the parentheses is z. Setting the
value of this expression to 0, we obtain:

z = 0. (15)

This formula represents XY plane in Fig. 5(a). Otherwise,
using equation z = r cos θ (Eq. (6)),

r cos θ = 0 (16)

∴ θ = π/2. (17)

Polar angle θ = 90◦ also represents XY plane.
In the case of 3d (3z2 − r2), 4d (3z2 − r2), or 5d (3z2 −

r2) orbital in Fig. 2(c), the numerical expression in the
parentheses is 3z2 − r2. Setting the value of this expression
to 0, we obtain:

3z2 − r2 = 0. (18)

By the use of Eq. (6),

r2(
√

3 cos θ + 1)(
√

3 cos θ − 1) = 0

∴ cos θ = −1/
√

3, cos θ = 1/
√

3 (19)

namely,

θ = 125.3◦, 54.74◦. (20)

These formulas represent two cones in Fig. 5(b).
In the case of 4f (5z3 − 3zr2), 5f (5z3 − 3zr2), or 6f

(5z3 − 3zr2) orbital in Fig. 6, the numerical expression in
the parentheses is z(5z2 − 3r2). By the similar treatment as
above, we obtain:

θ = 90◦, 39.23◦, 140.8◦. (21)

These formulas represent an XY plane and two cones in Fig.
5(c).

Similarly, by putting the polynomials of variables z and
r to 0, mathematical formulas of the nodes of category [B]
are obtained.
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Fig. 7. (a) Probability density distribution in the 3-dimensional representation of the squares of hydrogen atomic orbitals observing through y axis.
Glass size: 4 × 4 × 4 cm. (b) Schematic representation of the planar and conical nodes symmetrical about z axis.

Figure 7(a) shows 36 orbitals for values of principal
quantum number n from 1 to 6, and values of azimuthal
quantum number l = n − 1. These orbitals have no spheri-
cal node. Looking through the y axis, we can observe pla-
nar and conical nodes symmetrical about z axis (category
[B]). The patterns of these nodes are symbolically shown in
Fig. 7(b) [16]. The orbital at the top of each column has
no node of category [B] as is represented none in Fig. 7(b).
The number of nodes of category [B] increases one by one
as the value of n increases, and decreases one by one as the
value of |m| increases.

Total number of atomic orbitals for values of principal
quantum number n from 1 to 6 is 91, as is calculated from
Table 1 (1+4+9+16+25+36 = 91). In these, 55(91−36)
orbitals have spherical node(s).

7. Planar Nodes Containing z axis (Category [C])
Figure 8(a) shows 36 sculptured cubes in Fig. 7(a) turned

180 degrees around z axis and 90 degrees around x axis.
Looking through the z axis, we can observe planar nodes
containing z axis (category [C]). The orbital at the top of
Figs. 7(a) and 8(a) is a 1s orbital. As s orbitals have spher-
ical symmetry, the shapes of these two pictures are identi-
cal. In the second rows, 2p (y), 2p (z), and 2p (x) orbitals
are shown. Comparing Fig. 7(a) with Fig. 8(a), these three
orbitals have the same shapes having different direction of
nodal planes.

The number of planar nodes containing z axis (category
[C]) is the absolute of magnetic quantum number |m| (Table
2). For example, the value of magnetic quantum number
m of 1s or 2p (z) orbital is 0, each orbital has no planar
nodes containing z axis as is shown as none in Fig. 8(b).
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Fig. 8. (a) Probability density distribution in the 3-dimensional representation of the squares of hydrogen atomic orbitals observing through z axis Glass
size: 4 × 4 × 4 cm. (b) Schematic representation of the planar nodes containing z axis.

In the case of 2p (y) or 2p (x) orbital, |m| is equal to 1,
corresponding to a single horizontal or vertical line in Fig.
8(b) [16].

In Fig. 8(a), the absolute value of magnetic quantum
number |m| is the same in every orbital drawn up in a
column, giving the same pattern as is shown in Fig. 8(b).

In the case of m �= 0, there exists a pair of orbitals
having the same quantum number n, l, and |m|. When
rotating around z axis by 90 degrees/|m|, the planar nodes
containing z axis in one part of this pairing orbitals can be
transformed to the pattern of corresponding nodes of the
other part of the pairing orbitals.

At a glance, the form of atomic orbitals seems to be full
of chaos [17], however, by the classification according to
the node type in Fig. 7(a) or Fig. 8(a), we can see systematic
regularity shown in Fig. 7(b) or Fig. 8(b).

8. Relationship between an Absolute Square of Com-
plex Atomic Orbital and a Real Atomic Orbital

In the case of m �= 0, atomic orbital functions (3) in
Fig. 3 are all complex. Isosurfaces of squares of these
complex and also m = 0 wavefunctions are shown in Fig.
9(a). By taking linear combinations of a pair of complex
wavefunctions, the well known real atomic orbitals (4) are
obtained [10–12]. Isosurfaces of these real wavefunctions
are shown in Fig. 9(b).

Examples to obtain “real function form” by slicing up
“absolute square of complex function form” of hydrogen
3d orbitals with |m| planar node(s) are shown in Fig. 10
[17–19].

When n = 3, l = 2, and m = 0 (Fig. 10(a)), there exists
no planar node containing z axis. There is no slicing up,
therefore, the shapes of the resultant orbital (bottom) are
the same as the top view except for their mathematical signs
expressed by their colors.

When n = 3, l = 2, and |m| = 1, the number of planar
nodes containing z axis is 1. The mathematical process to
give Eq. (13) can be viewed geometrically as slicing up the
two doughnuts with one planar node containing z axis (Fig.
10(b) top, right) and with the edges rounded off to get the
clover type 3d (xz) orbital (Fig. 10(b) bottom, right). As
for the Eq. (14), slicing the two doughnuts with a node
perpendicular to this (Fig. 10(b) top, left), we get the pairing
clover type 3d (yz) orbital (Fig. 10(b) bottom, left).

When n = 3, l = 2, and |m| = 2, the number of planar
nodes containing z axis is 2, therefore, two equally spaced
planar nodes are used to slice a single doughnut, the familiar
clover type four lobes of 3d (x2 − y2) orbital is given (Fig.
10(c), right). When the two equally spaced planar nodes are
rotated around z axis for 45 degrees and are used to slice a
single doughnut, the familiar clover type four lobes of 3d
(xy) orbital is given (Fig. 10(c), left).

Figure 9(b) shows the result of slicing the “doughnut-
like” lobes into lobes using |m| planar nodes containing z
axis. For each non-zero value of |m|, a pair of real orbitals
are given. These two orbitals have the same shape and by
the rotation around the z axis by 90 degrees/|m|, one of the
pair is transformed into the other pair. In Fig. 9(b), only one
of the pair is shown.

A three dimensional representation of the probability
density of a complex or real hydrogen atomic orbital in a
spherical glass block was developed. Different from a cu-
bic media in Fig. 7(a) or 8(a), a spherical media has no
edge. This advantage is effective for the observation of
n = 1, 2, . . . , l = n − 1, m = 2 orbitals. In the case of
fourth column in Fig. 8(a), planar nodes containing z axis is
clearly seen as is shown the one of them in the fourth col-
umn in Fig. 7(a). However, as for the pairing orbitals shown
in the eighth column in Fig. 8(a), it is difficult to observe
planar nodes containing z axis because of the hindrance of
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(a) (b)

Fig. 9. Isosurfaces of (a) the absolute squares of hydrogen imaginary atomic orbitals and (b) real functionalized atomic orbitals.

Fig. 10. Obtaining the “real function form” (bottom) by slicing up the “absolute square of complex function form” (top) with |m| planar node(s)
[17–19].

(a) (b) (c)

   

Fig. 11. (a) A 4f (zx2 − zy2) (or 4f (xyz)) hydrogen atomic orbital model set on a plate for revolving. (b) Side view of the revolving image. (c) Top
view of the revolving image.

Fig. 12. (a) Characteristic pattern of standing waves of a 2-dimensional circular membrane of uniform thickness, attached to a rigid frame (n: number
of radial nodes; m: number of azimuthal nodes). (b) Cross section on the x-y plane of 3-dimensional hydrogen atomic orbitals.



SII10 S. Tokita

edges (the plane x = y, or x = −y coalesces into edges
parallel to the z axis). Another advantage of no edge effect
lies on the total amount of the sculpture. As the one shape
of the pairing orbitals transformed to the other by a proper
rotation, 36 sculptures in Fig. 7(a) or 8(a) are diminished
to 21 patterns listed in Fig. 9(b). The greatest advantage of
this sculpture lies in the appearance of the image of an ab-
solute square of complex orbital in Fig. 9(a) by revolving
a spherical glass block of the probability density of a real
hydrogen atomic orbital. Figure 11(a) shows a hydrogen 4f
(zx2 − zy2) (or 4f (xyz)) orbital, namely, an n = 4, l = 3,
m = 2 orbital set on a plate for revolving. On revolving,
the image of an n = 4, l = 3, |m| = 2 orbital of Fig. 9(a)
appears (Figs. 11(b) and (c)) [20, 21].

9. Epilogue
3-D isosurface model (Figs. 9 and 10) hardly shows the

entire region where an electron can be found. On the
other hand, in the diagram of probability density distribu-
tion models in a glass block (Figs. 2, 6, 7(a), 8(a) and 11),
an electron is found everywhere around the nucleus. In the
diagram of probability density distribution model, we can
compare the size of the orbitals from their distribution re-
gions (Figs. 2 and 6). The density of the dots sculptured in
the glass block shows the probability density of finding an
electron, so the nodal plane is well described as spherical
shell(s) (Figs. 2 and 6), planar or conical node(s) symmet-
rical about z axis (Fig. 7), or planar node(s) containing z
axis (Fig. 8) where the dots cannot be found. Number of
these nodes in hydrogen atomic orbitals is summarized in
Table 2. The form of atomic orbitals seems to be full of
chaos [17], however, by the classification according to the
node type in Fig. 7(a) or Fig. 8(a) we can see systematic
regularity shown in Fig. 7(b) or Fig. 8(b).

K. Miyazaki stated that the word “Science on Form” has
fascinating and rather magical power because an analogy on
form is observed over a wide area of scientific investigation
[22]. Vibrations of a circular membrane of a kettledrum are
known to be simulated by the use of Bessel functions [23,
24]. Figure 12(a) shows the result of these simulations to
give the two-dimensional membrane moving in a charac-
teristic pattern of standing waves. Topological analogy is
observed in Fig. 12(b) representing a cross section of hy-
drogen atomic orbitals [25].

The above-mentioned studies on hydrogen atomic or-
bitals are now developed to the visualization of several
molecular orbitals [26, 27], hybridized orbitals of organic
molecules or metal complexes [28], sculpture of molec-
ular form with electron clouds [29], and a study on n-
dimensional atomic orbitals [30].
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