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Using a simple band model which produces a helical spin ordering, we show the magnetic phase diagram by
minimizing the unperturbed energy which includes the c- f exchange interaction by replacing the f -spin operator
Sn with the expectation value 〈 Sn〉. As the c- f exchange interaction increases, the helix and the cone structures
appears without any crystal fields, and then the ferromagnetic structure becomes more stable. Secondly, we obtain
formulae of spin-wave dispersions and show their instabilities on the second-order transition boundaries. Near the
ferro-helix boundary, the spin-wave constant of the ferromagnetic spin-wave vanishes, while in the helical phase
the whole region of the wave-number 0 < qz < Q shows softening where the helical wave-number Q decreases
continuously. Thirdly, by the method of the double-time Green function, we derive the spin-wave dispersion at
finite temperatures. Finally, anomalous properties in magnon dispersions at finite temperatures for Gd, Ho and
those for diluted Tb-Y alloys are explained by use of numerical calculations.
Key words: c- f Exchange Interaction, Magnon Instabilities, Rare Earth Metals, Spin-Wave Dispersions

1. Introduction
Rare-earth metals are most typical materials to which

the c- f exchange interaction model is applicable, where
c means the conduction electron [1]. In heavy rare-earth
metals the fascinating variety of equilibrium magnetic con-
figurations has been found by neutron diffraction [2]. For
each of the heavy rare-earth metals except ferromagnetic
Gd, there are at least two temperature regions of magnetic
order. There is observed a transition at a temperature TN to
a helical or linear oscillatory configuration. At lower tem-
peratures, TC , further transitions to ferromagnetic, conical,
or antiphase domain-type configurations are observed.

By the assumption that Fermi energy is much greater
than the c- f exchange energy, the c- f exchange interac-
tion is treated by the second-order perturbation and hence
the Heisenberg-type f - f exchange interaction is derived.
Usual treatment of spin-waves in rare-earth metals has been
based on the Heisenberg exchange interaction including
crystalline anisotropy and magnetostriction [3,4,5].

In the ferromagnetic structure, the spin-wave spectrum
for the isotropic Heisenberg-type spin system has the for-
mula

�ω( q) = 2J [J (0) − J ( q)] (1)

where J is the total angular momentum and J ( q) is
the Fourier-transformed exchanged interaction constant be-
tween local spins. In the second-order perturbation of the c-
f exchange interaction, J ( q) can be readily evaluated. Its
q-dependence comes from the band structure as well as the
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q-dependence of the c- f exchange matrix element [1]. By
use of the band structure calculated by Keeton and Loucks
[6] and a phenomenological q-dependent matrix element
of a Gaussian form, Evenson and Liu [7] and Liu et al. [8]
obtained a magnon spectrum of Gd in the c-direction. By
using the APW band calculation, Lindgård et al. [9] made
an ab initio calculation of J ( q) for Gd for q along the c-
axis and showed that the calculated J ( q) is in good overall
agreement with experimental one [10], provided that a uni-
form scale factor is multiplied. Nonetheless, there remains
a large discrepancy at small values of q.

Those calculated bands are for the paramagnetic state.
The relativistic APW band calculation for heavy rare-earth
metal [6] showed that the ‘webbing’ between two arms near
L of those Fermi surfaces exists for Lu, Er and Dy, as well as
Y and determines the helical wavevector Q. The webbing,
however, is nearly absent in Gd. Measurement of the de
Haas-van Alphen effect in Y by Mattocks and Young [11]
confirmed that the general shape of the band-structure is as
predicted by the above RAPW calculation.

In the case of Gd, for example, a ferromagnetic struc-
ture is observed below TC = 293 K with a total magnetic
moment of 7.63 µB pre atom in zero field, where 0.63
µB per atom is due to the polarization of the c electron
[12]. Harmon and Freeman [13] investigated the ferromag-
netic band-structure of Gd using the spin-polarized APW
method and estimated that an average exchange splittings of
0.81(0.57) eV near the Fermi level induces the excess mo-
ment of 0.72(0.55) µB per atom. Hence the average c- f ex-
change constant I is estimated to be about 0.097 eV in Gd,
where the c- f exchange interaction is defined as I ( S · σ)

in which S is the f spin-operator and σ the Pauli spin-
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operator of the c electron. The effective Fermi energy for
the flat surfaces mentioned above is estimated to be about
0.2 eV in the paramagnetic Dy [6]. Hence this energy is
rather smaller than the c- f exchange energy.

When the temperature is lowered, spin-wave dispersions
in Ho [14] and Tb0.9Ho0.1 [15] increase for wavenumber
q larger than the helical wavenumber Q but decrease for
q smaller than Q. This feature is opposite to the tem-
perature dependence derived from the simple Heisenberg
model. In rare earth metals except Gd, the anisotropy en-
ergy and the magneto-elastic effects modify the magnon
spectrum [3,16]. With lowering temperature, the anisotropy
energy increases and causes an increase in the magnitude of
magnon energies in a similar way to ferromagnetic Tb and
Dy [17].

At low temperatures, all alloys of Gd, Tb, Dy and Ho
diluted with yttrium exhibit helical structures. Wakabayashi
and Nicklow [14,18,19] showed in these alloys of Tb and
Ho diluted with Y that well-defined helical spin waves exist
and that when the concentrations of magnetic ions decrease,
the magnon velocities at q = 0 become larger, while the
magnon energies for q > Q become lower and flatter.

Hence spin-wave dispersions in heavy rare-earth metals
show various anomalous features which are not explained
by the simple Heisenberg exchange interaction model [5].
Prominent features that we treat in this paper are the fol-
lowing.

(a) In Gd, the ferromagnetic magnon dispersion is normal
at low temperature but shows an anomalous dispersion near
Tc, that is, an initial flat dispersion followed by a sharp
increase at a critical wavenumber q = Qc [10] which is
nearly equal to the initial helical wavenumber in Tb and
Dy.

(b) When the temperature is lowered, magnon disper-
sions of the helical structure in Ho [14] and Tb0.9Ho0.1

[15] increase for wavenumber q larger than the helical
wavenumber Q but decrease for q smaller than Q.

(c) The alloys Tbx Y1−x (0.05 < x < 0.85) have helical
structure. As the value of x decreases, the magnon energies
decrease for q > Q but increase for q < Q [19].

The feature (a) concerning the temperature dependence
of spin-wave dispersion is opposite to the simple Heisen-
berg system, because any sharp structure is smeared out
by approaching TC . The non-linear c- f exchange effect is
shown to be most important for both the thermal variation of
the helical Q and the magnetic phase diagram [20]. Hence
we expect that the non-linear effect plays also an important
role on the magnon dispersions at small q values and their
temperature dependence [21,22] because the ferromagnetic
state in Gd passes through near the ferro-cone or ferro-helix
boundary near TC (see Fig. 13) [20].

Concerning the feature (b), this anomaly is also related
with the non-linear c- f exchange interaction effect. As
shown later, when 〈S〉 increases with decreasing tempera-
ture, the helix approaches the helix-ferro boundary (see Fig.
3), where the magnon dispersion in the helix shows soften-
ing for small q values.

When the concentration of magnetic ions decreases, the
average magnetic moment 〈S〉 at each site decreases on the
standpoint of the mean lattice approximation. Therefore the

decrease of the concentration corresponds to the increase of
the temperature. We expect to explain not only the feature
(b) but also the feature (c) from the same viewpoint of the
non-linear c- f exchange effect.

The organization of this paper is the following. After
summarizing the formulation in Sec. 2, we show the mag-
netic phase diagram. In Sec. 3, the spin-wave dispersion of
ferromagnet and its softening on the magnetic phase bound-
aries are discussed. In Sec. 4, the spin-wave dispersions of
conical and helical structures are discussed. Here and in
Appendix C, magnon softening and continuity of magnon
dispersions at the phase boundaries are investigated. In Sec.
5, we discuss an application of our calculation to finite tem-
peratures. The final section is devoted to comparison of the
calculation with experiments. It is noted that this paper is
written based on our research report [23].

2. Model Hamiltonian and Magnetic Phase Diagram
at T = 0

2.1 Model hamiltonian and formulation
The model Hamiltonian consists of the band energy term

and the c- f exchange term. As shown by Harmon and
Freeman [24], the c- f exchange matrix element I ( k, k′)
is a complicated function of k and k′. In the following, we
replace I ( k, k′) with a constant and adjustable parameter
I .

H = ∑
kσ

ε k a†
kσ

a kσ
− I N−1

∑
kα

∑
k

′
β

× ∑
n

ei( k− k
′
)· R n a†

kα
( σ · Sn)αβ a k

′
β

(2)

where S denotes the total angular momentum and the unit
� = kB = 1 are employed.

The band model ε k has a pair of flat, parallel Fermi
surfaces perpendicular to the kz-axis [6]. We linearize the
spectrum ε k in the kz-direction around the Fermi level [25]
and furthermore the spectrum perpendicular to its direction.

ε k = v1|kz | + v2(k⊥ − ka) �(k⊥ − ka) (3)

where the velocities v1 and v2 are parallel and perpendicular
to the kz axis, respectively, and k⊥ = |kx | + |ky |. The
step function �(k) is defined as �(k) = 0 for k < 0
and �(k) = 1 for k > 0. As ka increases, the flat part
of the Fermi surfaces increase as shown in Fig. 1. The
real Fermi surfaces have ripples [6] and are smeared by
the temperature and life time broadening effects. They are
taken into account by an effect of a simple life time iγ in the
conduction electrons. This approximation is too simple to
compare calculated results with experimental results in rare
earth metals, but semi-qualitative comparison is possible
[20].

To treat the nonlinear effect of the c- f exchange interac-
tion, each f -spin operator is rewritten as

Sn = 〈 Sn〉 + ( Sn − 〈 Sn〉), (4)

where 〈A〉 means the expectation value of A, and the first
term is included in the unperturbed Hamiltonian H0. The
ordered structure 〈 Sn〉 is assumed to be a cone structure
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Fig. 1. Conduction band model εk for ky = 0.

Fig. 2. Magnetic ordered structures of 〈Sn〉: (a) ferromagnet (Q = 0,
θ = π/2); (b) helix (Q �= 0, θ = π/2); (c) cone (Q �= 0, 0 < θ < π/2);
(d) ferromagnet (Q �= 0, θ = 0).

with a cone angle θ and a helical wave vector Q along the
kz axis as shown in Fig. 2 [3],

〈 Sn〉 = 〈S〉 (sin θ cos φn, sin θ sin φn, cos θ). (5)

where φn = (Q · Rn) is the turn angle. This cone structure
becomes the helical structure for θ = π/2 and the ferro-
magnetic structure for θ = 0 or Q = 0.

If there is no crystalline anisotropy, the cone axis can be
in any direction. For an anisotropy of easy plane the cone
axis is the c-direction while for an anisotropy of easy c-axis,
the situation is more complicated [5,20].

For the first transformation the local axes (ξn, ηn, ζn) are
introduced at each site Rn , where ζn is defined to be along
the direction of the local moment 〈 Sn〉, ξn along the direc-
tion perpendicular to both ζn and z axes, and ηn along the
direction perpendicular to ζn and ηn axes as shown in Fig.
3. Those unit vectors enξ , enη, enζ are given by

enξ = (cos θ cos φn, cos θ sin φn, − sin θ),

enη = (− sin φn, cos φn, 0),

enζ = (sin θ cos φn, sin θ sin φn, cos θ).

 (6)

Fig. 3. Local coordinate axes (ξn, ηn, ζn).

Hence the f -spin operator Snξ , Snη, Snζ are defined by

Sn = Snξ enξ + Snη enη + Snζ enζ . (7)

The unperturbed Hamiltonian H0 is diagonalized by the
transformation,

A k− = a k↑ cos θ k + a k−Q↓ sin θ k

A k+ = −a k↑ sin θ k + a k−Q↓ cos θ k

}
(8)

with

cos(2θ k ) =
ε k−Q − ε k + 2y√

(ε k−Q − ε k + 2y)2 + 4x2
(9)

where 0 ≤ θ k ≤ π

2 and

x = I 〈S〉 sin θ, y = I 〈S〉 cos θ . (10)

After these two transformations, the Hamiltonian H1 is
rewritten as

H = H0 + H1

H0 = ∑
kµ

E kµ
A†

kµ
A kµ

H1 = −I N−1
∑

k
∑

k
′
∑

n ei( k− k
′
)· R n

× (A†
k− A†

k+)(σ−( k, k′)Sn+
+σ+( k, k′)Sn− + σζ ( k, k′)Sn0)

×
(

A k
′−

A k
′+

)


(11)

where the new dispersion energy of the conduction electron
E kµ

is given by (see Fig. 10)

E k± = 1

2
[ ε k + ε k−Q

±
√

(ε k−Q − ε k + 2y)2 + 4x2 ]. (12)

The f -spin operators Sn± and Sn0 are

Sn± = Snξ ± iSnη, Sn0 = Snζ − 〈S〉, (13)

and the new spin matrices σ±( k, k′) and σζ ( k, k′) oper-
ating on the pseudo spin ± in A k± are

σ−( k, k′) = 1
2 [σ3 sin(θ k + θ k

′ − θ)

+ σ1 cos(θ k + θ k
′ − θ)

− iσ2 cos(θ k − θ k
′)

+ 1 sin(θ k − θ k
′)],

σ+( k, k′) = σ−( k′, k)†,
σζ ( k, k′) = σ3 cos(θ k + θ k

′ − θ)

− σ1 sin(θ k + θ k
′ − θ),


(14)
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where σ1, σ2 and σ3 are the usual Pauli spin matrices and 1
a unit matrix.
2.2 Magnetic phase diagram at T = 0

The unperturbed energy E0 at T = 0 is defined by a
model of the fixed Fermi-energy in which the reservoir cor-
responds to other parts of Fermi surface,

E0 = 〈H0 − E f N̂ 〉
=

∫ E f

−∞

∑
k ,µ

γ (ω − E f )

(E kµ
− ω)2 + γ 2

dω

π
, (15)

where N̂ is the number operator of the conduction electrons
[20]. In the equilibrium state of the unperturbed system,
the helical wavenumber Q0 and the cone angle θ0 are deter-
mined so as to minimize the energy

E0 = E0(θ, Q : ka, I 〈S〉, γ ) (16)

for a given set of the system parameters ka , I 〈S〉 and γ .
Hence the partial derivatives ∂E0/∂θ and ∂E0/∂ Q vanish at
Q = Q0 and θ = θ0. The former is given by (Appendix C)

∂E0

∂θ
= −I 〈S〉

∑
k

( f k− − f k+) sin (2θ k − θ)

= 0, (17)

where f k± = f (E k±) and f (ε) is given by

f (ε) = 1

2
− 1

π
tan−1 ε − E f

γ
. (18)

Because the Fermi level should be in the gap created by the
nesting, Q0 and θ0 satisfy the condition

|Q0/Q f − 1| ≤ I 〈S〉 sin θ0/E f , (19)

where the nesting wavenumber Q f = 2E f /v1.
The non-dimensional quantities are introduced as

Ẽ0 = (C/N E f )E0, C = 4π3v1v2
2 N/E f

3,

k̃a = kav2/E f , � = I 〈S〉/E f , � = γ /E f ,

Q̃ = Qv1/E f , q̃z = qzv1/E f , q̃x = qxv2/E f .


(20)

Then the above condition is rewritten as

|Q̃0/2 − 1| ≤ � sin θ0 . (21)

Figure 4 shows the magnetic phase diagrams at zero tem-
perature for � = 0 and 0.01 [20]. For small c- f exchange
interaction �, the helical structure (θ = π

2 , Q̃0 ≈ 2) is re-
alized because of flat Fermi surfaces perpendicular to the
kz-axis. When � increases in the region of k̃a < 1.2, the
cone structure (0 < θ < π

2 , Q0 > 0) becomes more sta-
ble than the helix structure. The second-order helix-cone
boundary is determined by

∂2E0/∂θ2
∣∣
θ= π

2 ,Q̃=Q̃0
= 0 , (22)

and hence give by

7
6 + k̃a − k̃2

a ln 2
e�

= 0, for � � � � 1 ,
7
6 + k̃a − k̃2

a ln 1
e�

= 0, for � � � � 1 .

}
(23)

Fig. 4. Phase diagram for � = 0. The full curves represent the sec-
ond-order transition boundaries and the broken curve the first-order
transition boundary. The dotted curve is the second-order ferro-cone
boundary for � = 0.01. Spin-wave dispersions are calculated at points
A to N.

When � increases further and tends to unity in the region
of k̃a < 1.2, the cone structure becomes the ferromagnetic
structure (θ = 0). The second-order ferromagnet-cone
transition boundary is determined by

∂2E0/∂θ2
∣∣
θ=0,Q̃=2 = 0 . (24)

For small value of �, this boundary is given by

1

6
(7 − �2) + k̃a − k̃2

a ln

√
1 − �2

e�
= 0 , (25)

and for � = 0.01 drawn by the dotted curve in Fig. 4.
When � tends to zero, the ferro-cone boundary goes to
� = 1. The second-order ferro-cone transition boundary
is sensitive to small value of the life time �, but the other
boundaries change little.

When � increases in the region of k̃a > 1, the helical
wavenumber Q0 tends to zero and the second-order helix-
ferromagnet transition occurs. This transition boundary is
detemined by

∂2E0/∂ Q2
∣∣
θ= π

2 ,Q̃=0 = 0, (26)

and hence given by

1

3
(� + 1)2(2� − 1) + (�2 − 1)k̃a − k̃2

a = 0 . (27)

Setting � = 1 in the above boundary, we obtain that k̃a is
2√
3

� 1.2 at the tricritical point.
2.3 Effective f -spin Hamiltonian

In the second-order perturbation of H1, the effective f -
spin Hamiltonian HS is obtained by

HS = 〈H1〉 + 〈H1(E0 − H0)
−1 H1〉c (28)

where the suffix c means the connected diagram. Applying
the spin-wave method to HS , we can derive magnon dis-
persions in the ferromagnet in Sec. 3, and the cone and the
helix in Sec. 4.
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3. Spin Wave in Ferromagnet
3.1 Effective f -spin Hamiltonian

The effective f -spin Hamiltonian in the ferromagnet is
given by

HS = −J0

∑
n

Sn0

+N−1
∑

n

∑
m

∑
q �=0

ei q· Rnm K ( q)Sn0Sm0

−N−1
∑

n

∑
m

∑
q

ei q· Rnm J+( q)

×(Snx Smx + Sny Smy)

−N−1
∑

q

J−( q)
∑

n

Snz (29)

where J0, K ( q) and J±( q) are

J0 = I N−1
∑

k ( f k↑ − f k↓),

K ( q) = I 2 N−1
∑

k
∑

σ

f k σ

ε k− q σ
−ε k σ

,

J±( q) = I 2 N−1
∑

k {
f k↓(1− f k− q ↑)

ε k− q ↑−ε k↓

±
f k↑(1− f k− q ↓)

ε k− q ↓−ε k↑
},


(30)

and σ means ↑ or ↓ in the σ sum and

ε k↑ = ε k − I 〈S〉, ε k↓ = ε k + I 〈S〉. (31)

From Eq. (18), f kσ
= f (ε kσ

) with the life time γ at T = 0.
Note that

J0 = 2〈S〉J+(0) . (32)

3.2 Spin wave in ferromagnet at T = 0
At zero temperature, 〈S〉 is equal to S. The f -spin oper-

ators

Sn± = Snx ± iSny, Sn0 = Snz − S (33)

are represented by the annihilation and creation magnon
operators bn and b†

n [26]

Sn+ = √
2S (1 − b†

n bn/2S)
1
2 bn,

Sn− = √
2S b†

n(1 − b†
n bn/2S)

1
2 ,

Sn0 = −b†
n bn.

 (34)

The Fourier transforms of the magnon operators are

bn = N− 1
2
∑

q ei q· Rn b q ,

b†
n = N− 1

2
∑

q e−i q· Rn b†
q .

}
(35)

After expanding the square-roots of Eq. (34) with 1/S and
taking only terms of the first order of S, the Hamiltonian HS

is rewritten as

HS = E0 +
∑
q

ω0( q) b†
q b q , (36)

and the spin wave dispersion is given by

ω0( q) = 2S [J+(0) − J+( q)] , (37)

Fig. 5. Ferromagnetic magnon dispersions along qz and qx axes for
k̃a = 1.0 and � = 0: Full curves A correspond to � = 1.3, broken
curves B to � = 1.01. ω̃ = ω0/J0.

and E0 is a constant −S
∑

q [J+( q) + J−( q)].
For the ferromagnetic structure to be stable, all the fre-

quencies must be positive. In particular the frequency near
q = 0 tends to zero on the second-order ferromagnet-helix
boundary, and the frequency at q = Q f = (0, 0, Q f ) tends
to zero on the second-order ferromagnet-cone boudary.

The frequency ω0( q) is quadratic in q = (qx , qy, qz) for
small q

ω0(qx , 0, qz) � D1qz
2 + D2qx

2. (38)

The spin wave constant D1 is obtained by the formula (Ap-
pendix A),

D1 = 1

4N S

∑
kσ

f kσ

[
∂2ε k

∂kz
2 − σ

I S

(
∂ε k
∂kz

)2
]

. (39)

By use of the band model of Eq. (3), this formula is rewrit-
ten as the simpler formula of Eq. (A.4).
3.3 Spin-wave dispersion near the ferromagnet-cone

boundary
Near the ferromagnet-cone boundary, the spin-wave dis-

persion shows a sharp dip around q = Q f . A small life-
time weakens the logarithmic divergence of the frequency
at q = Q f near � = 1 and thus makes the ferromagnet
stable even for � < 1.

The spin-wave frequency at Q0 = (0, 0, Q0) is given by
(Appendix C (7))

ω0(Q0) = 1

N S
lim
θ0→0

∂2E0(θ0, Q0)

∂θ2
. (40)

When � tends to zero, Q0 goess to Q f and hence ω0(Q0)

vanishes on the ferro-cone boundary from Eq. (24). Spin-
wave dispersions along the qz and qx axes are shown in Fig.
5.

For the ferromagnet for � < 1 with a small value of �,
the magnon dispersion has the quadratic form

ω0(qx , 0, qz) ≈ D1 qz
2 + D2 qx

2, (41)

for q̃z < 1 − � and for q̃x < min{1 − �, 2k̃a}. The spin-
wave constants are given by

D1 =
(

v1

v2

)2

D2, D2 = I 2S

6π3v1 N
, (42)
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Fig. 6. Ferromagnetic magnon dispersions along qz and qx axes for
k̃a = 1.5 and � = 0: Full curves C correspond to � = 1.4, broken
curves D to � = 1.12. ω̃ = ω0/J0.

and independent of k̃a . Note that a small value of � has very
small effect on the spin-wave constants.
3.4 Spin wave near the ferromagnet-helix transition

boundary
For � > 1, the perfect splitting of up- and down-

spin bands is realized and hence the up-spin band becomes
empty. Using Eq. (A.4), we obtain the spin wave constants
given by

D1 = I

2C�2

(
v1

E f

)2

×
[

1

3
(2� − 1)(� + 1)2 + (�2 − 1)k̃a − k̃2

a

]
,

(43)

D2 = I

2C�2

(
v2

E f

)2

×
[

1

3
(2�3 − 1) + (�2 − 1)k̃a

]
. (44)

When k̃a increases for � > 1, D1 decreases and tends to
zero on the ferromagnet-helix boundary of Eq. (27). The
softening of D1 means the formation of helical component
with an infinitesimal value of Q0 on this boundary. Figure
6 shows the dispersion curves at C and D in Fig. 4. When
the ferromagnetic state tends to the ferro-helix boundary,
its dispersion along the qz becomes flat in the region of
0 < q̃z < Q̃ f = 2, while it increases rapidly in the region
of q̃z > 2, and hence a sharp kink appears at q̃z = 2.

The dispersions near the ferro-cone-helix tricritical point
are shown in 4.5.

4. Spin Waves in Conical and Helical Structures
4.1 Effective f -spin Hamiltonian

From Eq. (28) the effective f -spin Hamiltonian HS con-
sists of the first-order and the second-order contributions.
By use of Eq. (17) the first-order contribution is given by

−J0

∑
n

Sn0 (45)

where Sn0 = Snζ − 〈S〉 and

J0 = I

N

∑
k

( f k− − f k+) cos(2θ k − θ) (46)

with f k± = f (E k±). The second-order contribution is
represented by

− 1

N

∑
n

∑
m

∑
q

ei q· Rnm (Snξ , Snη, Sn0)

×
 J11( q) iJ12( q) J13( q)

−iJ12( q) J22( q) iJ23( q)

J13( q) −iJ23( q) J33( q)

  Smξ

Smη

Sm0

 . (47)

The f - f exchange matrix elements Ji j ( q) are given in
Appendix B. Note that Ji j ( q)’s are not continuous at q =
0 except for J22( q).
4.2 Spin waves in cone and helix at T = 0

The cone structure of Eq. (5) becomes the helix when
θ = π

2 and the ferromagnet when θ = 0 or Q = 0 (see
Fig. 2). Neglecting the quantum correction to Snζ at zero
temperature, we put 〈S〉 = S.

When (Snx , Sny, Snz) are replaced by (Snξ , Snη, Snζ ) in
Eqs. (33) and (34), the magnon energy is calculated in the
same way as the case of the ferromagnet. Expanding HS

with 1/S and retaining the terms up to the order of S, we
obtain

HS = E0

+
∑
q

[2A q b†
q b q + B q (b†

q b†
− q + b q b− q )]

(48)

where E0 is a constant and A k and B k are

2A q = J0 − S[J +
11( q) + J +

22( q)]
−2SJ −

12( q),

2B q = −S[J +
11( q) − J +

22( q)]

 (49)

and J ±
i j are

J ±
i j ( q) = 1

2
[Ji j ( q) ± Ji j (− q)]. (50)

By the well-known transformation [4]

β q = b q cosh φ q + b†
− q sinh φ q

β
†
q = b†

q cosh φ q + b− q sinh φ q

}
(51)

with the conditions φ− q = φ q and

(A q + A− q ) sinh 2φ q = 2B q cosh 2φ q , (52)

HS is diagonalized as

HS = E1 +
∑
q

ω( q)β
†
q β q , (53)

where E1 is a constant. The magon energy ω( q) is given
by

ω( q) = C( q) +
√

F1( q) · F2( q) (54)

where F1( q), F2( q) and C( q) are

F1( q) = A q + A− q + 2B q

= J0 − 2SJ +
11( q),

F2( q) = A q + A− q − 2B q

= J0 − 2SJ +
22( q),

C( q) = A q − A− q = −2SJ −
12( q).

 (55)
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Note that F1( q) and F1( q) are even functions of q but
C( q) an odd function. The Fourier transforms of f -spin
operators S q ξ and S q η are given by (Appendix C (1))

S q ξ �
√

S
2

[
F2( q)

F1( q)

]1/4
(β q + β

†
− q ),

iS q η �
√

S
2

[
F1( q)

F2( q)

]1/4
(β q − β

†
− q ).

 (56)

4.3 Modes of oscillations
One of special cases of interest is the situation near q =

0. Using analogies from the Heisenberg model, we can
obtain the following relations (Appendix C (2) and (3))

lim
q→0

F1( q) = F1(0+) = 1

N S

∂2

∂θ2
E0(θ0, Q0), (57)

lim
q→0

F2( q) = F2(0) = cot θ

N S

∂

∂θ
E0(θ0, Q0). (58)

For the stable cone structure, the first derivative of E0 with
respect to θ should vanish. Hence F2( q) and C( q) should
vanish as q → 0 so that ω( q) becomes zero as q → 0 and
so S q ξ from Eq. (56). The mode of this oscillation is such
that the whole spin system rotates as a rigid body around
the helical axis.

Another special case of interest is the case of q = ±Q0,
in which we can obtain the relation (Appendix C (4))

F1(Q0) = F2(Q0) cos2 θ0 . (59)

In the helical phase (θ = π
2 ), C( q) and F1( q) vanish at

q = ±Q0 and so ω( q), where S q η also vanishes and S q ξ

diverges from Eq. (56). The mode of this oscillation is a
small canting of the plane in which the spin vector rotates.
In the cone phase, C( q) makes a complicated dispersion
but there is some similarity to the ferromagnetic case as
shown in 4.5 and 4.6. From Eqs. (7) and (56), the lowering
operator S− = ∑

n(Snx − iSny) is represented by (Appendix
C (5))

S− � N S sin θ0 δQ0,0
+

√
2N S cos θ0 β

†
−Q0

. (60)

Firstly the mode of oscillation for q = −Q0 is such that
the cone rotates as a rigid body about a certain axis in the
xy-plane and hence no energy change should be associated
with this motion (Appendix C (6)) as can be seen from Eq.
(60) [27]. Secondly, for q = +Q0, the motion of the
cone includes a bending oscillation of the conical surface
and hence the frequency is not necessarily zero (Appedix
C (6)). Finally on the ferro-cone boundary, the conical
magnon coincides with the ferromagnetic magnon of the
wavevector shifted by Q0 as seen from Eq. (60).

For the assumed conical structure to be stable, the fre-
quency must be positive for all values of q, implying that
the product F1( q) · F2( q) should be positive. In the fol-
lowing subsections, we calculate numerically the dispersion
ω( q) and two velocities in the cone phase, v+ and v− for
qz > 0 and qz < 0 respectively. The velocities v± which
are given by

v± = lim
qz→±0

∂ω

∂qz
= v ± u. (61)

Fig. 7. � dependences of the wavenumber Q̃ and the magnon velocities v

and v′ along the line k̃a = 1.5 in Fig. 4.

Fig. 8. Helical magnon dispersions for k̃a = 1.5 and � = 0: Full curve E
corresponds to � = 0.9, broken curve F to � = 0.5, dotted curve G to
� = 0.1. See triangles in Fig. 4 and arrows in Fig. 7.

show interesting behavior due to the non-linear c- f ex-
change effect, particularly near the phase boundaries. Note
that in the Heisenberg model u always vanishes because
C( q) is given by

C( q) = 1

2
[J (Q0 − q) − J (Q0 + q)] cos θ (62)

and J ( q) has a maximum at q = Q0 [4].
In the following subsections, we show magnon disper-

sions of conical and helical states. For convenience, we use
the reduced quantities,

ω̃ = ω

J0
, (ṽ±, ṽ, ũ) = (v±, v, u)

E f

v1 J0
, (63)

and denote θ0 and Q0 by θ and Q.
4.4 Dispersions near helix-ferromagnet boundary

When � increases along the line of k̃a = 1.5, the helical
structure changes to the ferromagnet. With increasing of �,
Q̃ decreases gradually, while two z-component velocities v

at qz = 0 and v′ at qz = Q decrease rapidly and tends to
zero on the helix-ferro boundary as shown in Fig. 7. Figure
8 shows that near the boundary, all the frequencies for 0 <

qz < Q0 show softening and a kink appears at qz = Q f .
Finally, the whole shape of the dispersion changes smoothly
to the ferromagnetic dispersion (see curve D in Fig. 6.)
4.5 Dispersions on helix-cone-ferromagnet transition

line
With increasing of � along the line k̃a = 1.2, the

spin configuration changes from the helix to the cone, and,
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Fig. 9. � dependences of the wavenumber Q̃, the cone angle θ and
velocities v±, v and u along the line k̃a = 1.2 in Fig. 4.

Fig. 10. Magnon dispersions in the cone, helix and the ferromagnetic
phases for k̃a = 1.2 and � = 0: Full curves I correspond to � = 0.9,
broken curves J to � = 0.6, dotted curves K to � = 0.26. Short arrows
are peaks on curves I and J. See squares in Fig. 4 and arrows in Fig. 9.

through a narrow region of the helix again near the tricriti-
cal point, changes finally into the ferromagnet (see Fig. 4).
Figure 9(a) shows that the second-order helix-ferro transi-
tion occurs on the condition that Q̃ tends to zero, and the
cone-helix transition around � = 1.0 is of the first-order
from (θ ∼ 0, Q̃ ∼ 2) to (θ ∼ π/2, Q̃ ∼ 0). Note that
the cone-ferro boundary is nearly of the second-order as θ

goes to zero. Figure 9(b) shows the values of θ , Q̃ and the z-
component velocities at q = 0 as functions of �. The veloc-
ities v± becomes zero on the second-oder helix-cone bound-
ary. When � increases, v± increase rapidly and finally van-
ish on the ferromagnetic boundary again. The behavior of
v± near the cone-helix-ferro tricritical point is similar to the
second-order cone-ferro transition. Even though both θ and
Q change drastically in both the states divided by the first-
order cone-helix transition, both the states are similar and
nearly continuous in the sense that both are continuously
approaching to the common ferromagnetic ordering. The
magnon dispersion is also nearly continuous at this first-
order transition. Three examples of the magnon dispersions
are shown in Fig. 10.

Figure 10 shows that each of magnon dispersions denoted
by I and J has two peaks around (−Q+) and (−Q−). Both
Q± connect the bottom of the upper band to the Fermi level
of the lower band as shown in Fig. 11 and hence are given

z

Fig. 11. The upper band Ek+ and the lower band Ek−, and Q± that
connects the bottom of Ek+ and the Fermi level of Ek−.

by

Q̃± = v1 Q±
E f

= 1

2
Q̃ ± ỹ +

√(
1

2
Q̃ ± ỹ

)2

+ x̃2, (64)

where x̃ = � sin θ and ỹ = � cos θ . When � increases
in the cone phase, the region of quadratic dispersion be-
tween these two peaks extends and the spin-wave constant
at qz = −Q decreases. At the same time, the region of the
linear dispersion around qz = 0 shrinks. The whole shape
of the conical dispersion approaches to the ferromagnetic
dispersion (see curve D in Fig. 6). Note that translating
the magnon dispersion of the cone by Q = Q f to the qz

direction is needed to obtain the magnon dispersion of the
ferromagnet on the cone-ferro boundary.
4.6 Dispersions near the cone-helix boundary

With decreasing of k̃a along the line � = 0.3, the spin
configuration changes from the helix to the cone, and finally
to the ferromagnet for small value of �. Figure 12 shows
the cone angle θ , the helical wavenumber Q̃ and the z-
component velocities at q = 0. The velocities tends to
zero on the cone-helix boundary and diverge on the ferro-
cone boundary, which exists in a finite k̃a for a small �

(see Fig. 4). Figure 13 shows three magnon dispersions
along the qz direction for � = 0.3. For the cone state,
the dispersion L shows two peaks marked by arrows at
−Q± given by Eq. (64). In the helix or the cone phase,
the magnon energies show softening at qz = ±(Q+ +
Q−) (see Fig. 11) and hence for a small value of � they
becomes unstable. This means that the higher harmonics
are produced as discussed in Ref. [20]. This is, however,
very sensitive to fine structures of the flat Fermi surfaces
and thus we do not treat this problem here.

5. Spin Wave at Finite Temperature
We attempt to extend the formulae of spin waves at T =

0 to finite temperature. First of all, the spin configuration is
determined by minimizing the unperturbed free energy F0

instead of E0, which may be written in the molecular field
approximation as

F0 = −T
∑
kµ

× ln
(

1 + exp{−[E kµ
(〈Sζ 〉, θ, Q) − E f ]/T }

)
−TS(〈Sζ 〉) (65)

where 〈Sζ 〉, θ and Q are the variational parameters and
the second term is the entropy of the f -spin system. The
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Fig. 12. k̃a dependences of the cone angle θ , the wavenumber Q̃ and
velocities ṽ±, ṽ and ũ for � = 0.3.

Fig. 13. Magnon dispersions for the cone and the helix for � = 0.3. Full
curves L correspond to k̃a = 1.0, broken curves M to k̃a = 1.2, dotted
curve N to k̃a = 1.5. Short arrows are two peaks on curve L. See circles
in Fig. 4 and arrows in Fig. 12.

magnon dispersion is given by the same equations such as
Eq. (37) by replacing S by 〈Sζ 〉 if we assume that 〈Sζ 〉 does
not depend on θ and Q and the entropy of the conduction
electrons is negligible compared with that of f -spins. This
approximation seems to be not so bad because the ordered
temperature is not so high and the ordered energy does not
seem to depend so much on θ and Q. The same result is
obtained by the following treatment.

Let us consider the case of the ferromagnet, for example,
and introduce the double-time Green function given by [28]

Gnm(t) = 〈〈Sn+(t); Sm−〉〉 (66)

where the up- and down-spin operators Sn± are given by Eq.
(33). Then the equation of motion of this Green function is

i
∂

∂t
Gnm(t) = 2〈S〉 δnm δ(t) + J0 Gnm(t)

+N−1
∑

l

∑
q �=0

exp(i q · Rnl)

×K ( q)〈〈Sn+(t)Sl0(t) + Sl0(t)Sn+(t); Sm−〉〉
−N−1

∑
l

∑
q

exp(i q · Rnl)

×[J+( q)〈〈Snz(t)Sl+(t) + Sl+(t)Snz(t); Sm−〉〉
−J−( q)〈〈Snz(t)Sl+(t) − Sl+(t)Snz(t); Sm−〉〉]. (67)

The higher-order Green functions may be decoupled as [29]

〈〈Sn+(t)Slz(t); Sm−〉〉 � 〈Sz〉〈〈Sn+(t); Sm−〉〉. (68)

From the Fourier transform of the Green function

G( q, E) = 1

N

∑
n

∫
Gnm(t)ei(Et− q · R nm ) dt

2π

= 1

π

〈Sz〉
E − ω0( q)

, (69)

the excitation energy is obtained as

ω0( q) = 2〈Sz〉[J+(0) − J+( q)] . (70)

Following Tahir-Kheli and ter Haar [30] we can calculate
the magnetization as a function of

�(〈Sz〉) = 1

N

∑
q

1

exp(ω0( q)/T ) − 1
. (71)

Defining the Curie temperature TC at which the magnetiza-
tion 〈S〉 tends to zero, we obtain

TC
−1 = 3

2

1

S(S + 1)

1

N

∑
q

1

J+(0) − J+( q)
. (72)

For other phases to which the same treatment is applica-
ble, the spin-wave formula at finite temperature is obtained
from Eq. (54) at T = 0 by replacing S and E0 by 〈S〉 and F0,
respectively. The temperature effect is included in 〈S〉 and
γ . Properties of spin-wave dispersions in finite temperature
are discussed in Sec. 6.

6. Discussion and Conclusions
The present model is too simple to compare calculated

spin-wave dispersions with experimental results in rare-
earth metals, but semi-quantitive comparison is possible as
shown in Ref. [20]. To remove any ambiguity, we have to
neglect an additional Heisenberg-type exchange term which
comes from another part of the Fermi surfaces and bands.
As mentioned in Sec. 1, E f and I are assumed to be 0.24
eV and 0.097 eV, respectively.

Based on the facts that v2 should be chosen to be smaller
than v1 in order to fit the electronic specific heat and that ka

is larger than Q f from the band calculation, k̃a is expected
to be larger than unity and hence chosen to be 1.8 (see Fig.
1). The value of � at T = 0 K, �0, is chosen tentatively
to be 0.2 for Gd, which is mostly due to ripples of the
Fermi surfaces. The temperature dependence of � is more
important in the following discussions.

Table 1 shows a list of important parameters for each
of rare-earth metals [20]. Here, for the crystal field, only
the lowest-oder term V 0

2 is shown. Figure 14 shows phase
diagrams for � = 0.1 to 0.4 [20]. When � increases,
the second-order ferro-cone boundary moves rapidly to the
larger value of k̃a and the cone region disappears while the
ferro-helix bounday becomes the first-order.

First we consider Gd because the crystal field anisotropy
is negligible. In Table 1, k̃a is assumed to be 1.8 and �0 to
be 1.4. Hence the value of � is 1.4 or 1.0 and the value of
� is 0.2 or 0.3 for T/TC = 0 or 0.7, respectively. As shown
in Fig. 14, the ferromagnetic state of Gd moves downward
along the vertical line from a cross ‘a’ as the temperature
increases from T = 0 K.
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Table 1. Spin values S, reduced crystal-field energy Ṽ = V 0
2 J 2/E f ,

reduced c- f exchange energy �0 at 0 K, and reduced life-times �’s:
�(TN ) at TN , �(TC ) at TC , �0 at 0 K. E f = 0.24 eV, I = 0.097 eV and
k̃a = 1.8. See Eq. (20).

S Ṽ �0 �(TN ) �(TC ) �0

Gd 7/2 – 1.4 – 0.40 0.20

Tb 3 9.3 1.2 0.30 0.29 0.15

Dy 5/2 10.4 1.0 0.25 0.18 0.15

Ho 2 3.3 0.8 0.20 0.10 0.10

Er 3/2 -6.3 0.6

Tm 1 -12.3 0.4

As v1 is estimated to be 3.2 × 10−7 cm/s and the ratio
v2/v1 is to be about 0.25 from the band calculation of Dy
[6], C is estimated to be about 300. Hence at T = 0,
the spin-wave constant D1 is estimated to be 0.0125 or
0.0147 eVÅ−2 and the maximum magnon-energy ωmax =
2S J+(0) to be 14.1 or 15.7 meV for � = 0 or 0.2, respec-
tively. The experimental values of D1 and ωmax are 0.0245
eVÅ−2 and 14.3 meV, respectively [10]. A discrepancy be-
tween those two values of D1 should be due to neglect of
the other part of Fermi surfaces in the present model. By as-
suming that the value of � is 1.4 or 1.0, and the value of �

is 0.2 or 0.3 for T/TC = 0 or 0.7, respectively, we can cal-
culate magnon dispersions of ferromagnetic Gd and com-
pare those with the experimental dispersions as shown in
Fig. 15 [10]. From the above parameters the characteristic
wavenumber Qc = 2E f /v1 is estimated to be 0.21[2π/c],
where c is the lattice constant along the c-axis. The anomaly
of temperature dependence of the magnon dispersions in
the region of qz < Qc is explained by the softening of the
magnon energies. The reason is that, as mentioned in Ref.
[20], decreasing � or with increasing temperature, the fer-
romagnetic state passes near the ferro-cone or ferro-helix
boundary (see Fig. 14). Hence we may expect that the soft-
ening of the magnon dispersion results in an anomalous de-
crease of the magnetization [31]. A discrepancy in large qz

region should be due to neglect of effects of other Fermi
surfaces, the k-dependence of the c- f exchange matrix el-
ement I and the zone boundary effect [32].

Secondly we consider the magnon dispersion of Ho in
the helical phase. In the helix, the spin-vectors 〈 Sn〉 rotate
as their positions Rn advance in the direction of Q0, and
are parallel in a particular basal plane perpendicular to the
c axis due to the axial crystal-field-anisotropy. Hence the
magnon energy at qz = Q0 becomes finite. Figure 16 shows
observed magnon dispersions at 50 K and 78 K [14]. The
effect of the axial anisotropy should be introduced to the
frequency ω( q) as

ω( q) =
√

[F1( q) + 2SB] F2( q) (73)

where S is the total angular momentum and B the effective
axial-anisotropy constant. The constant B is given by (see
Appendix D)

S2 B = 3

2
V2

0 − 15

4
V4

0 + 105

16
V6

0, (74)

in which Vl
0 is the axial-anisotropy constant of the l-th or-

der. From both experimental fit and theoretical fit by as-

Fig. 14. Phase diagram for V = 0 and for some values of �; 0.1, 0.2,
0.3 and 0.4 after Ref. [20]. Full curves represent the second-order
transition and broken curves the first-order transition. For � = 0.4,
the cone region disappears. Vertical line from a to c is an expected
temperature-dependence of the Gd state. � = 0.2 for a, 0.3 for b, and
0.4 for c. Full lines denoted by Gd-Y and Gd-La represent the state of
the Gd1−x Yx and Gd1−x Lax alloys at T = 0 K, respectively.

Fig. 15. Magnon dispersions of Gd in the c direction: Curve A at 78 K,
and curve B at 232 K; Broken curves by experiment, and full curves by
theoretical fitting.

suming the point-charge model, V2
0, V4

0 and V6
0 have been

evaluated to be 2.66, 0.414 and -0.539 meV, respectively

[1]. The temperature dependence of Vn
0(T ) is given by the

relation

Vn
0(T ) = Vn

0 σ n(n+1)/2,

and the reduced magnetization σ = 〈S〉/S is derived from
the neutron scattering in Ho [33]. By using Eq. (74) and the

relation of Vn
0(T ), the value of B is estimated to be 0.032

meV at 50 K and 0.023 meV at 78 K.
The model-parameters k̃a and �0 are assumed to be 1.8

and 0.6, respectively. These values can reproduce the tem-
perature dependence of helical Q0 [20, 34], but this value
of �0 is a little smaller than the value in Table 1. By use
of an equation �/�0 = σ , � is 0.53 at 50 K and 0.4 at
78 K. From the fact that the wavenumber Q0 approaches
0.27 [2π/c] at TN = 133 K, E f /v1 is estimated to be 0.14
[2π/c]. For simplicity we put � = 0.
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Fig. 16. Magnon dispersions of helical Holmium along the c direction:
Full curves at 50 K, and broken curves at 78 K; Thick curves for the
experiment and thin curves for the theory.

Table 2. Fitting parameters J0 and B with values of ± errors for helical
Ho.

T [K] J0 [meV] B [meV]

78 2.54 +0.31
−0.11 0.0369 −0.0040

+0.0017

50 3.02 +0.31
−0.11 0.0346 −0.0051

+0.0067

Using the above model parameters and two parameters J0

and B, we can calculate the magnon dispersion for helical
Ho. The parameters J0 and B are chosen so as to be the
mean absolute difference between those two dispersions for
qz < 0.35 [2π/c] less than 0.05 meV. Table 2 gives the
values for J0 and B with the values of errors. Figure 16
shows the comparison between the calculated dispersions
and the experimental dispersions [14].

The most prominent feature that the magnon energies for
qz < Q increase with increasing temperature is explained
by the temperature dependence of � = σ�0, that is, the
non-linear effect of the c- f exchange interaction. The ef-
fective axial-anisotropy constant in Table 1 is consistent
with the values estimated above [1] but its temperature de-
pendence is too weak.

Thirdly let us consider the magnon dispersions in the he-
lical phases of Tbx Y1−x alloys (0.05 < x < 0.85) whose
moments are confined in the c plane [35] (see Fig. 17).
When the mean-field-approximation is applied to those al-
loys, the magnon dispersion is given by Eq. (73), provided
that S is replaced by x S.

For Tb the model parameter k̃a is assumed to be 1.8
from Table 1, and �0 to be 1.0 so as to reproduce the x
dependence of Q near T = 0 K [35]. The life-time �

is taken to be zero for simplicity. Note that the value of
�0 is a little smaller than the value in Table 1 due to the
assumption of � = 0. From the fact that the wavenumber
of Q0 approaches 0.28 [2π/c] as x tends to zero, E f /v1 is

Fig. 17. Magnon dispersions along the c axis of helical phases of Tbx Y1−x

alloys at 4.7 K. Experiments: ◦, x = 0.1; •, x = 0.5; �, x = 0.76.
Theory: Chain curve, x = 0.1; broken curve, x = 0.5; full curve,
x = 0.76.

Table 3. Fitting parameters J0 and B for the magnon dispersions of
Tb1−x Yx alloys.

x J0 [meV] B [meV]

0.1 1.88 0.312

0.5 6.59 0.337

0.75 8.27 0.314

estimated to be 0.14 [2π/c].
Because the experimental data are so much scattered,

we determine two fitting parameters J0 and B so as to
make the calculated magnon-energies provide the fit to the
experimental data both at qz = Q0 and at qz = 2π/c. Table
3 shows the values of fitting parameters. The values of B
are in good agreement with the value for pure Tb, 0.30 meV,
estimated by Kasuya [1]. The values for J0 do not increase
linear but concave as x increases. This fact indicates that
the conduction band has not the simplified linear-dispersion
of kz in Eq. (3) but a usual quadratic-dispersion. The reason
is that the bottom of the conduction band plays an important
role in the case of �0 = 1.0. Note that the same discrepancy
is also observed in the temperature dependence of magnon
dispersions of helical Ho in Fig. 16. The anomaly of the
concentration dependence of the magnon energies which
occurs for q < Q described as the feature (c) in Sec. 1 is
naturally explained by replacing � by x�0, that is, by using
the non-linear c- f exchange model as shown in Fig. 17. The
calculated dispersions show a softening around qz = 0.56
[2π/d] due to the instability of the formation of the second-
order harmonic. Actually this instability is observed in the
case of x = 0.1 while in the other cases smeared by the
life-time effect.

Finally, we consider magnon dispersions of conical
phase. The most striking feature is that the magnon veloc-
ity for qz > 0 is different from one for qz < 0 as shown in
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Eq. (61) due to the non-linear c- f exchange effect. The ex-
perimental results for Ho0.5Er0.5 seems to show this feature
[36], but those for Er do not show it [37]. The reason is that
Er has large crystal-field anisotropy.

Appendix A. Spin Wave Constant D1 for Ferro-
magnet

From the magnon energy

�ω0( q) = 2S[J+(0) − J+( q)]

and

J+( q) = I 2

N

∑
kσ

f k−σ

ε k− qσ
− ε k−σ

,

the spin-wave constant along the qz-direction is

D1 = 1

2

∂2ω0(0)

∂qz
2

= −S
∂2 J+(0)

∂qz
2

. (A.1)

The second-partial derivative of J+( q) with respect to qz is
given by

∂2 J+( q)

∂qz
2

= I 2

N

∑
kσ

f k−σ

(ε k− qσ
− ε k−σ

)2

×
[
−

∂2ε k− qσ

∂qz
2

+
2 (∂ε k− qσ

/∂qz)
2

ε k− qσ
− ε k−σ

]
.

Setting q = 0 and ε kσ
− ε k−σ

= −2σ I S, we obtain the
formula

∂2 J+(0)

∂qz
2

= − 1

4N S2

∑
kσ

f k−σ

×
[

∂2ε k

∂kz
2 − σ

I S

(
∂ε k
∂kz

)2
]

. (A.2)

Using the band model of Eq. (3), we have

∂ε k
∂kz

= −v1 sgn kz,
∂2ε k

∂kz
2 = 2v1 δ(kz) , (A.3)

where sgn is the sign function, and hence the simpler for-
mula

D1 = v1

2N S

∑
kσ

f kσ

[
δ(kz) − σ v1

2I S

]
. (A.4)

Note that f k↓ = 0 for � > 1.

Appendix B. The f - f Exchange Matrix Elements
Ji j ( q)

Ji j ( q) is represented as

Ji j ( q) = Ki j ( q)(1 − δ q ,0) + Ji j ( q). (B.1)

where δ q ,0 is a Kronecker’s delta. Ki j ( q) and Ji j ( q) are
given as follows, K11( q) K12( q) K13( q)

K22( q) K23( q)

K33( q)


= I 2

N

∑
kµ

f kµ
(1 − f k

′
µ
)

E k
′
µ

− E kµ

×
 s2(α) µ s(α)s(β) s(α)c(α)

s2(β) −µ s(β)c(α)

c2(α)



and  J11( q) J12( q) J13( q)

J22( q) J23( q)

J33( q)


= I 2

N

∑
kµ

f kµ
(1 − f k

′−µ
)

E k
′−µ

− E kµ

×
 c2(α) −µ c(α)c(β) −c(α)s(α)

c2(β) −µ c(β)s(α)

s2(α)


where k′ = k − q, α = θ k + θ k

′ − θ , β = θ k − θ k
′ ,

c(θ) = cos θ and s(θ) = sin θ . Note that in the limit of
q = 0, K22( q) becomes zero so that J22( q) is continuous

at q = 0.

Appendix C. The Proof of Equations (56), (57),
(58), (59), (60) and (40)

In the following we denote Q0 and θ0 by Q and θ for
convenience. From Eqs. (46), (50), (55) and (B.1), we have
for i = 1, 2

Fi ( q) = J0 − 2SJ +
j j ( q),

J +
i i ( q) = K +

i i ( q)(1 − δ q ,0) + J+
i i (− q),

K +
i i ( q) = 1

2
[Kii ( q) + Kii (− q)],

J+
i i ( q) = 1

2
[Jii ( q) + Jii (− q)],

J0 = I

N

∑
k

( f k− − f k+) cos(2θ k − θ),

where f kµ
= f (E kµ

). For simplicity we use the following
abbrebiations

ε0 = ε k , ε± = ε k±Q, D = I S,

R− =
√

(ε− − ε0 + 2y)2 + 4x2,

R+ =
√

(ε0 − ε+ + 2y)2 + 4x2,

P± = 4D2 + 2y(ε− − ε+)

±(ε− − ε0)(ε0 − ε+).

 (C.1)

Then from Eq. (9), we have

sin 2θ k = 2x
R− , cos 2θ k = ε−−ε0+2y

R− ,

sin(2θ k − θ) = − (ε−−ε0) sin θ

R−
,

cos(2θ k − θ) = (ε−−ε0) cos θ+2D
R−

.

 (C.2)

(1) The proof of Eq. (56)
The Fourier transforms of the f -spin operators S q ξ and

S q η are

S q ξ = 1√
N

∑
n e−i q· Rn Snξ ,

S q η = 1√
N

∑
n e−i q· Rn Snη.

}
(C.3)

Defining the f -spin operators as

Sn± = Snξ ± iSnη, Sn0 = Snζ − S,

and using the same relations as Eqs. (34) and (35), we
obtain

S q ξ � √
S/2(b q + b†

q ),

iS q η � √
S/2(b q − b†

q ).

}
(C.4)
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From Eq. (51) we have

β q = b q cosh φ q + b†
− q sinh φ q ,

β
†
− q = b†

− q cosh φ q + b q sinh φ q ,

}

and hence

β q + β
†
− q = eφ q (b q + b†

− q ),

β q − β
†
− q = e−φ q (b q − b†

− q ).

}
(C.5)

From Eqs. (52) and (55) we have

eφ q =
√

F1( q)/F2( q). (C.6)

Using Eqs. (C.5) and (C.6) we can rewrite Eq. (C.4) as

S q ξ �
√

S
2

[
F2( q)

F1( q)

]1/4
(β q + β

†
− q ),

iS q η �
√

S
2

[
F1( q)

F2( q)

]1/4
(β q − β

†
− q ).

 (C.7)

(2) The proof of Eq. (57)
From Appendix B,

K +
22( q) = I 2

2N

∑
kµ

f kµ
− f

k
′
µ

E
k

′
µ
−E kµ

sin2 β,

J+
22( q) = I 2

2N

∑
kµ

f kµ
− f

k
′−µ

E
k

′−µ
−E kµ

cos2 β,

 (C.8)

where k′ = k − q and β = θ k − θ k
′ . Letting q go to

zero, we have

K +
22(0

+) = lim
q→0

K +
22( q) = 0, (C.9)

and in the same notation of 0+ as q → 0

J +
22(0

+) = I 2

N

∑
kµ

f k− − f k+
R−

. (C.10)

From Eq. (C.2), we have

cos(2θ k − θ) = 2D

R−
− cot θ sin(2θ k − θ). (C.11)

Using the partial derivative of E kµ

∂ E kµ

∂θ
= µD sin(2θ k − θ), (C.12)

we can rewrite Eq. (17) as

∂E0

∂θ
= −D

∑
k

( f k− − f k+) sin(2θ k − θ). (C.13)

Putting Eq. (C.11) into the above expression of J0 and using
Eqs. (C.8), (C.10) and (C.13), we can rewrite J0 as

J0 = 2SJ +
22(0

+) − cot θ

N S

∂E0

∂θ
. (C.14)

Hence we obtain

F2(0+) = J0 − 2SJ +
22(0

+) = −cot θ

N S

∂E0

∂θ
. (C.15)

In the equilibrium state, the partial derivative ∂E0/∂θ = 0
and hence

F2(0+) = −cot θ0

N S

∂

∂θ
E0(θ0, Q0) = 0. (C.16)

(3) The proof of Eq. (58)
From Appendix B,

K +
11( q) = I 2

2N

∑
kµ

f kµ
− f

k
′
µ

E
k

′
µ
−E kµ

sin2 α,

J+
11( q) = I 2

2N

∑
kµ

f kµ
− f

k
′−µ

E
k

′−µ
−E kµ

cos2 α,

 (C.17)

where k′ = k − q and α = θ k + θ k
′ − θ . Letting q go to

zero, we have

K +
11(0

+) = − I 2

2N

∑
kµ

∂ f kµ

∂ E kµ

sin2(2θ k − θ),

J+
11(0

+) = I 2

N

∑
k

f k−− f k+
R− cos2(2θ k − θ).

 (C.18)

The second derivative of E0 is

∂2E0

∂θ2
=

∑
kµ

[
∂2 E kµ

∂θ2
f kµ

+
(

∂ E kµ

∂θ

)2 ∂ f kµ

∂θ

]
. (C.19)

From Eq. (C.12) we have

∂2 E kµ

∂θ2
= −µD cos(2θ k − θ)

×
(

1 − 2D

R−
cos(2θ k − θ)

)
. (C.20)

Using Eq. (C.18) with Eqs. (C.14) and (C.20) we rewrite
the first and second terms of Eq. (C.19) as∑

kµ

∂2 E kµ

∂θ2
f kµ

= N S
{
J0 − 2S J+

11(0
+)

}
,

∑
kµ

(
∂ E kµ

∂θ

)2 ∂ f kµ

∂ E kµ

= −2N S2 K +
11(0

+).

Hence using Eqs. (C.19) and (55) and J +
i i ( q) = J+

i i ( q) +
K +

i i ( q), we obtain

1

N S

∂2E0

∂θ2
= J0 − 2SJ +

11(0
+) = F1(0+). (C.21)

(4) The proof of Eq. (59)
From Eqs. (C.2), we have

sin2 α = R− R+−P−+2c2(ε−−ε0)(ε0−ε+)

2R− R+
,

cos2 α = R− R++P−+2c2(ε−−ε0)(ε0−ε+)

2R− R+
,

sin2 β = R− R+−P+
2R− R+

,

cos2 β = R− R++P+
2R− R+

,

E k
′± − E k± = R− R+−P−

ε+−ε−∓(R− R+)
,

E k
′∓ − E k± = − R− R++P−

ε+−ε−±(R+ R+)
,


(C.22)

where k′ = k+Q and α = θ k +θ k
′ −θ and β = θ k

′ −θ k .
Using Eq. (C.22) we can derive the following equations

sin2 α

E k
′
µ

− E kµ

= ε+ − ε− − µ(R+ − R−)

2R− R+

− cos2 θ(ε− − ε0)(ε0 − ε+)

R− R+(E k
′
µ

− E kµ
)

, (C.23)

cos2 α

E k
′−µ

− E kµ

= −ε+ − ε− + µ(R+ + R−)

2R− R+

+ cos2 θ(ε− − ε0)(ε0 − ε+)

R− R+(E k
′−µ

− E kµ
)

, (C.24)
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sin2 β

E k
′
µ

− E kµ

= ε+ − ε− − µ(R+ − R−)

2R− R+

− (ε− − ε0)(ε0 − ε+)

R− R+(E k
′
µ

− E kµ
)
, (C.25)

cos2 β

E k
′−µ

− E kµ

= −ε+ − ε− + µ(R+ + R−)

2R− R+

+ (ε− − ε0)(ε0 − ε+)

R− R+(E k
′−µ

− E kµ
)
. (C.26)

Using Eqs. (C.23) and (C.24), we can rewrite J11(Q) as

J +
11(Q) = K +

11(Q) + J+
11(Q)

= I 2

N

∑
k

f k− − f k+
R−

− cos2 θ
I 2

2N

∑
kµ

(ε− − ε0)(ε0 − ε+)

R− R+

×
(

f kµ
− f k

′
µ

E k
′
µ

− E kµ

−
f kµ

− f k
′−µ

E k
′−µ

− E kµ

)
. (C.27)

Using Eqs. (C.25) and (C.26), we can rewrite J22(Q) as

J +
22(Q) = K +

22(Q) + J+
22(Q)

= I 2

N

∑
k

f k− − f k+
R−

− I 2

2N

∑
kµ

(ε− − ε0)(ε0 − ε+)

R− R+

×
(

f kµ
− f k

′
µ

E k
′
µ

− E kµ

−
f kµ

− f k
′−µ

E k
′−µ

− E kµ

)
. (C.28)

From Eqs. (B.1) , (C.9) and (C.10) the first term of LHS
of Eqs. (C.27) and (C.28) is given by J +

22(0
+). In the

equilibrium state, from Eq. (C.14) we have J +
22(0

+) = J0

and hence

J0 − J +
11(Q) = cos2 θ

(
J0 − J +

22(Q)
)
. (C.29)

Finally we obtain

F1(Q) = cos2 θ F2(Q). (C.30)

(5) The proof of Eq. (60)
The f -spin operator Sn is defined by

Sn = (Snx , Sny, Snz).

From Eq. (7) we have

Snx = Snξ cos θ cos φn − Snη sin φn

+Snζ sin θ cos φn,

Sny = Snξ cos θ sin φn + Snη cos φn

+Snζ sin θ sin φn,

Snz = −Snξ sin θ + Snζ cos θ.

 (C.31)

By using Eqs. (C.31), (C.3) and φn = Q · Rn , we rewrite
S− as

S− =
∑

n

(Snx − iSny)

=
√

N
(

SQξ cos θ − iSQη + SQζ sin θ
)

e−iφn .

From Eqs. (C.7) and (C.30), we have

S±Qξ �
√

S
2 cos θ

(β±Q + β
†
∓Q),

iS±Qη �
√

S cos θ
2 (β±Q − β

†
∓Q).

 (C.32)

Hence we obatain

S− � (N S sin θ) δQ,0 +
√

2N S cos θ β
†
−Q. (C.33)

(6) The mode of oscillation for q = ±Q
We consider the two modes of oscillations corresponding

to ω(Q) and ω(−Q). The classical picture is represented
here [4]. For ω− = ω(−Q), let us put βQ = β

†
Q = 0,

β−Q = |β| exp(−iω−t +ψ) and β
†
−Q = |β| exp(iω−t −ψ)

where ψ is an arbitrary phase. Hence we obtain

Snξ =
√

2S
N cos θ

|β| cos(−φn − ω−t + ψ),

Snη =
√

2S cos θ
N |β| sin(−φn − ω−t + ψ).

 (C.34)

Using Eqs. (C.31) and (C.34) and setting ψ = ω−t for
example, we have

Snx � S sin θ cos φn + A cos θ,

Sny � S sin θ sin φn,

Snz � S cos θ − A sin θ cos φn,

 (C.35)

where the amplitude A is given by
√

2S/N cos θ |β|. Hence
we obtain

Sn � 〈 Sn〉 + A〈S〉−1〈 Sn〉 × ey, (C.36)

where 〈S〉 is equal to S at T = 0. The mode of oscillation
is such that the whole spin system rotates as a rigid body
about the y-axis on the plane perpendicular to the cone axis.
Hence ω(−Q) = 0. This situation can be seen from Eq.
(C.33) [27].

For ω(Q), let us put β−Q = β
†
−Q = 0, βQ =

|β| exp(−iω−t + ψ) and β
†
Q = |β| exp(iω−t − ψ). In the

same calculation, we obtain

Snx � S sin θ cos φn + A cos θ cos 2φn,

Sny � S sin θ sin φn + A cos θ sin 2φn,

Snz � S cos θ − A sin θ cos φn.

 (C.37)

This motion of the cone includes a bending oscillation of
the cone surface.

(7) The proof of Eq. (40)
If the cone angle θ goes to zero under the condition of

Eq. (19)

|Q/Q f − 1| ≤ 2D sin θ/E f ,

then x → 0, y → D, Q → Q f and

cos(2θ k − θ) → sgn(ε k−Q↓ − ε k↑),

sin(2θ k − θ) → 0.

}
(C.38)

Using Eq. (C.38) and the following relations

E k+ →
{

ε k−Q↓ , for ε k−Q↓ > ε k↑ ,

ε k↑ , for ε k−Q↓ < ε k↑ ,
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E k− →
{

ε k↑ , for ε k−Q↓ > ε k↑ ,

ε k−Q↓ , for ε k−Q↓ < ε k↑ ,

we obtain from Eqs. (30) and (32)

J0 → I

N

∑
k

( f k− − f k+) sgn(ε k−Q↓ − ε k↑),

= I

N

∑
k

( f k↑ − f k↓) = 2S J+(0). (C.39)

On the other hand, as θ goes to zero, from Eq. (C.17) we
have

K +
11(0

+) → 0,

J +
11(0

+) → I 2

N

∑
k

f k− − f k+
E k+ − E k−

= I 2

N

∑
k

f k↑ − f k↓
E k↑ − E k↓

= J+(Q f ),

and hence

J +
11(0

+) → J+(Q f ). (C.40)

From Eqs. (C.39) and (C.40), we obtain

F1(0+) = J0 − 2SJ +
11(0

+)

→ 2S[J+(0) − J+(Q f )] = ω0(Q f ). (C.41)

Appendix D. The Effective Anisotropy Constant B
In the rare earth metals with the hexagonal closed packed

structure, there are the second, the fourth and the sixth order
anisotropy field. Neglecting the planner anisotropy for the
simple helix or the cone structure given by Eq. (5), we write
the crystal field anisotropy as

Hcry =
∑

n

[V2
0 O2

0( Sn)

+V4
0 O4

0( Sn) + V6
0 O6

0( Sn)] (D.1)

where Ok
0( Sn) is the Racah operator and Sn =

(Snx , Sny, Snz). Rewriting Eq. (D.1) in terms of the local
f spin operator (Snξ , Snη, Snζ ) and using the Bose-operator
expansion of the Racah operator [38], we obtain

Hcry = Ecry + h(a0 + a†
0)

+ ∑
q

[K1a†
q a q + 1

2
K2(a

†
q a†

− q + a q a− q )]

(D.2)

where

Ecry = N (V2
0 P2

0 + V4
0 P4

0 + V6
0 P6

0),

h = N

2S
(V2

0 P2
1 + V4

0 P4
1 + V6

0 P6
1),

K1 = − 1

S
(3V2

0 P2
0 + 10V4

0 P4
0 + 21V6

0 P6
0),

K2 = 1

2S
(V2

0 P2
2 + V4

0 P4
2 + V6

0 P6
2)

(D.3)

with the Legendre polynomial Pk
m = Pk

m(cos θ) and

Vk
0 = vk

0S(S − 1
2 ) · · · (S − 1

2 (k − 1)). For the stable struc-
ture, the magnon energy is given by

ω( q) = C( q)

+
√

[F1( q) + K1 + K2][F2( q) + K1 − K2].

(D.4)

By use of K1 = K2 for the helix (θ = π
2 ), B is given by

S2 B = 3

2
V2

0 − 30

8
V4

0 + 105

16
V6

0 (D.5)

Using C(0) = 0, Eq. (59) and

K1 − K2 = −h cot θ = 1

N S tan θ

∂Ecry

∂θ
, (D.6)

we obtain the following relation

lim
q→0

ω( q) = 0. (D.7)
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