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Abstract. Aperiodic ordered structure of materials, quasicrystal, was discovered in
aluminum manganese alloy in 1984 (Shechtman et al., 1984). It showed icosahedral
symmetry which was forbidden in traditional crystallography. The Penrose tiling
(Penrose, 1974, 1977) is the key-concept to understand such type of order. The
author succeeded in extending the Penrose tiling to three dimension in 1985
(Ogawa, 1985). The present work is an unpublished part of the investigation of
quasicrystals and Penrose tiling to understand the origin of self-similarity. The
essential parts were carried out in early 1986 and reported at a symposium of the
present project in January, 1988.

1. Introduction

Five-fold symmetry seems to locate at a special position among rotational
symmetries. Only five-fold one was skipped in crystalline symmetry to which
(one-, two-,) three-, four-, and six-fold symmetry belong. It is well known that
golden ratio and Fibonacci sequence are associated with the self-similarity contained
in a pentagon. It is also well known that the golden ratio is the simplest continued
fraction. The generalization of the golden ratio 7 to other integer k is straight for-
ward.
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T=1,. (1-1

In any case, an irrational number T,
rk{kwm}/z (1-2)
and its inverse number with negative sign
rk'=—r;1=—[M—k}/2 (1-3)
are the solutions of quadratic equation

tf —kr, —1=0. (1-4)

It has a systematic rational approximation

‘ K +1 KB +2k K43k +1 B +4k° +3k
’ TR+l B2k 0 K43kt +1 0T

p —>17. (1-5)

Generally an infinite sequence

=10k k41, K2k K 43K 1, I+ 4K + 3k, |
(1-6)

_[n/2] (n_m_l)! n-2m-1

momi(n=2m-1)!
which can be defined with a recursion formula of second order

Jowr =+ fu (1-7)

associates with it. The case of k= 1 corresponds to the Fibonacci sequence.
However, the generalization in this paper is toward another direction. It is
based on the relation between the length of diagonals of regular G-gons with
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primitive number G. (Though G is restricted to primitive numbers for simplicity in
this paper, the arguments go almost in parallel for any integer G. Something
troublesome lies in the fact that star polygons are not always single-stroke figures.)
Nevertheless, it is turned out later that there are some connections between two
directions of generalization. The length d, of the nth diagonal as a function of the
shortest diagonal d is very similar to the general form of the sequence in Eq. (1-6).
The difference between them lies only in the sign of the term. It is not clear yet what
is the essential fact connecting them.

The important relations for regular pentagons are summarized in Section 2.
The similar relations are derived for regular heptagons in Section 3. The relations
are generalized to regular G-gons, where G is an arbitrary primitive integer in
Section 4. There, a more general viewpoint was introduced.

2. The Golden Ratio and Fibonacci Sequence Associated with Pentagon

In a regular pentagon P (P,P,P;P,Ps) of side length 1, the diagonals are only
one kind and of length 7. Being the positive root of the quadratic equation

?-1-1=0, (2-1)

an irrational number
r=(V5+1)/2=1.6180339887... (2-2)

isknown as golden ratio. A regular pentagon is drawn together with its all diagonals
in Fig. 1. A pentagram P’ (PP3PsP,P,), consisting of five diagonals, is a star
polygon which is sometimes referred to as a (5/2)-gon. Therein, a side of length t
is divided into three parts as

p=ty Lyl (2-3)

Two diagonals P, P; and P, P, divide P into three isosceles triangles AP P, P,
AP, P3P, and AP, P,Ps. The side lengths and angles of AP, P,P; and AP,P,Ps are
[1, 1, 7] and (¢, ¢, 3¢) and those of AP, P3P, are [z, 7, 1] and (2¢, 2¢, ¢), where ¢
=cos !(7/2) =n/5=36°. The isosceles triangles which are associated with a regular
pentagon are only these two kinds,

A, ()=[1.1,7)(6.4.34)
(2-4)
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Fig. 1. A regular pentagon together with all of its diagonals. The diagonal length is the golden ratio ©
~ 1.6180 when the edge length in the unit of the side length 1. See that there are two kinds of
isosceles triangles listed in Eq. (2-4) and their divisions (Eq. (2-5)) therein.

83g(2) = [, 7.1](2.20.4)

where the notation Ay(1) and A,y(7) are introduced so that the suffix denotes the
magnitude of a base angle and the variable in the parenthesis denotes a side length.
Any of these isosceles triangles of side length 1 was constructed with a set of similar
elements of side length 7! as easily seen from Fig. 1.

Ay(1)=24,(1/ 1)+ Ay4(1/ 7)

(2-5)

Ayy(1)= 8,17 7)+ Ayy(1/ 7).

These relations between a set of the isosceles triangles and another set of the similar
isosceles triangles express a kind of self-similarity. It is the prototype of the self-
similarity seen in the Penrose tiling, which is the key concept of the ideal
quasicrystal.

Fibonacci sequence {f,} is a semi-infinite sequence of integers which is
closely connected with the self-similarity associated with a regular pentagon and
with the golden ratio. It is defined by a recursion formula

Jo=0, fi=b fou =Jut S0 (2-6)

The first 16 terms are as follows
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{fis n21}={1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,...}. (2-7)

The recursion formula in Eq. (2-6) is expressed in a matrix form

0 1 n 0 .
e s L] e e

The matrix T may be referred to as the forward matrix. The eigenvalue equation
of T is the same quadratic equation as Eq. (2-1) and the eigenvalues are Tand 1-t
= —771. The corresponding eigenvectors are given by

el e

Tv, = v, Ty, =—1'v,. (2-10)

The sequence can be extended to an infinite sequence with the terms of negative
index

(o fasfanfan ) ={L-1,2,-3,5-8,13,-21,..}.  f,=(-1)"""f, (2-11)

by the help of the backward matrix defined as the inverse matrix of T

-1 1
R

The ratio f,,/f, of the successive terms of the Fibonacci sequence tends in the limit
of infinitely large n to the bigger eigenvalue 7

Sl fyo T (now) (2-13)

Apart from Eq. (2-8), T” for an arbitrary integer » is directly related with Fi-
bonacci sequence

for AT Thas S [ f
" " —(- 2-14
T [ﬁ, f,,H}T [f_,, f.m} =) [—fn f,,_l} (@-14)
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Tl 5] o (-1

and 7" and f, are mutually connected by
=Tt S T =(‘1)n[fn+1 _fnt]’ (2-16)
fo=—————- (2-17)

3. A Regular Heptagon

Let H (H,H,H;H,HsHH;) be a regular heptagon of side length 1. It is shown
together with its all diagonals in Fig. 2. The magnitude of the interior angle at a
vertex is 50 where 0 = n/7. There are only two kinds of diagonals o and B(>al). It
is easy to see that

a =2cos6 ~ 1 801937736 (3-1)

and

B = acosf +cos20 = 2c0s20 + 1 = 4cos”0 — 1 ~ 2 246979604  (3-2)

The relations

Fig. 2. A regular heptagon together with all of its diagonals. There are two kinds of diagonals d| = a
~1.8019 and d, = 3  2.2470. See that there are three kinds of isosceles triangles listed in Eq. (3-
8).
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a’=1+B, af=a+p, B*=1+a+p, (3-3)
a'l=1l+a-B, p'=B-a, pla=p-1, a/f=a-1, a'+p 7 =1

More generally, any rational power of a and 3 is expressed as linear combination
of a, B and 1 with only integral coefficients.

There are two star polygons associated with a heptagon H; the one is a (7/2)-
gon ' (H\H3HsH,H,H,Hg) of side length o and the other is a (7/3)-gon H"
(HH,H,H:HH,Hs) of side length B. In /', a side a is divided into three parts as

a=—+-">5+—, 3-4
a o «a ( )
cf.(2-3)
and in A" a side B into five parts as
ﬂ=ﬁ+—17+i+—17+—0£. (3-5)
B B° o B B
cf.(2-3)

Ifall of fourteen diagonals of H are drawn, a diagonal of length a is divided into five
parts

aol L -6
a af B° aff «

cf.(2-3)
and a diagonal of length f into seven parts

polya 111

1
5 F+F+a—ﬁ+ﬂ—2+%+ﬁ. 3-7)

cf.(2-3)

There are three isosceles triangles associated with a heptagon H of side length 1,
with the same notation as in the case of a pentagon,

Ay(1)=[1,1,](6,6,56),
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Ayo(a)=[a,a,B)(26,26,36), (3-8)
cf.(2-4)
As6(B)=[B.B.1](36.,36,0).

These triangles are divided into the miniatures of these three triangles as shown in
Fig. 3. These self-similar relations, are expressed as,

Ag(1)=244(1/ B)+2454(1/ B)+ A34(1/ B),

Aw(l)=2A9(1/ﬁ)+3429(1/ﬁ)+Aw(l/ﬂ), (3-9)
cf.(2-5)
Asg(1)=Ag(1/ B)+ As0(1/ B)+ A36(1/ B).

It is convenient to introduce the following two matrices A and B,

010 001
A=[1 0 1| B=[0 1 1}, (3-10)
01 1 111
cf.(2-8)
(a)
() ©

Fig. 3. Division of the three isosceles triangles associated with a regular heptagon. The side lengths of
three isosceles triangles are 1. The lengths of the thick lines are 1/B. See Eq. (3-9).
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whose eigenvalue equations are respectively

22— 2% -22+1=0 for A, (3-11)
cf.(2-1)
and A =242 — 1 +1=0 for B.
It is noted that the structure of matrices A and B are very similar to that of matrix

T in Eq. (2-8) in the pentagonal case.
It is remarkable that all of the three vectors v, v, and v; defined by

1 B a
v=lal v,=| 1] n=|-8| (3-12)
Jij -a 1

cf.(2-9)

are common eigenvectors of A and B, respectively associated with the eigenvalues
(o, B~o = 1/B and 1-B = —p/a) and (B,1—o = —a/B and 1+o—P = 1/a)

Av, = av;, Av, =(B-a)v,, Av;=—(B-1)v,, (3-13)
¢f.(2-10)
Bv, =Bv, By, =—(a—-1)v,, By =(1+a-pB)vs.

It can be easily seen by making use of the relations in Eq. (3-3). It follows that all
the relations with o and B are valid when they are replaced respectively by matrices
A and B.

A similar semi-infinite sequences to Fibonacci sequence are defined for
matrices A and B,

a a

n+l — “n-1
n _ —
A" = a Apt1 Api2 =4y |

Ay Ayl Gpyn — 4y a1 tay,

(3-14)
bn—l bn - bn—2 bn

Bn - bn - bn_z bn + bn~l bn+1 - bn—l . Cf.(2 - 14)
bn bn+l —bn—l bn+l
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It is remarked that these sequences are thus defined and the role of the forgoing
matrix in this case is different from in Eq. (2-8). The recursion formulae for {a,}
and {b,} are given by

a1 :an+zan—l_an—2’ (3_15)
cf.(2-6)
bn+l = an +bn—l _bn—Z

It is reasonable that there are some common features between Eqs. (3-15) and (3-
11). Some starting terms of {a,} and {b,} are respectively

{a,; n21}={1,0,2,1,5,5,14,19,42,66,131,221,417,728,...} (3-16)

cf.(2-7)
{b,; n21}={1,1,3,6,14,31,70,157,353,793,...}.
The forward matrix for these sequences are respectively
0 10 ay_y 0 10 b,_,
0 0 1|for|a,,|and |0 O 1] for|b,, (3-17)
-1 21 a, -1 1 2 b,
cf.(2-8)
In the limit of n—o0, they tend to
A, /a, > a, b, /b, —p, (3-18)
cf.(2-13)
and
1 o P 1 o p
n n
Aa—)a a? aﬁ,iﬁaa a’ af |. (3-19)
a n
" B ap P’ B ap p
cf.(2-15)

It follows from the relation that the sequences of the ratio of three integers [a,, |: a,:
(aps1 —ay,1)] and [b,_: (b, — b, ,): b,] gives systematic rational approximation of
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an irrational ratio of three numbers 1:a.:p. It is noted that matrices A and B are
independently defined and sequences {a,} and {b,} are defined respectively only
through matrices A and B. Although the sequences {a,} and {b,} were indepen-
dently defined, they are closely connected with each other not only in their limit of
n—>co but also in their negative n’s as shown below. By making use of the inverse
matrices

1 -1 0 -1 1
A'=[1 0 0| B'=|-1 1 0} (3-20)

-1 0 1 1 0 O
cf.(2-12)

the sequences are naturally extended to the negative indices

a_n a, A_pi1 — Ay
A= a_, a_p+1 A_pe2 =0y | (3 - 21)
A_py) =Gy Q_yip — 4, Ay tay,

cf.(2-14)

It is obtained by replacing » routinely by —» in Eq. (3-14). By the calculation of »-
th power of A1, it is turned out that their values are expressed in terms of b’s for
positive n.

bn+1 bn bn—l - bn+1
= bn bn—l bn—2 _bn > (3_22)
bn—l - bn+l bn—2 - bn bn—l - bn
and similarly
b—n—l b—n —bAnAZ b—n
B = b—n - b——n—2 b—n—l + b~n b—n+l - b—n—l (3 - 23)
b—n b—n+1 - b—n—l b—n+l
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Ayt ay —ay2 a,

=14 Qi Gt a, QT apy |

a, ay_1 ~ Apyl a,-1

Therefore sequences {a,} and {b,} are unified into an infinite sequence (infinite in
both directions) and they are mutually reversal order

=b

—no

ay=b, =0. (3-24)
cf.(2-11)

Finally, o” and B" are generally expressed as linear combination of 1, o and 3

a” =a, | +a,o +(an+1 —an_l)ﬂ, (3-25)
of (2-16)
Bn = bn—l + (bn+1 - bn—l)a + bnﬁ

and the general expressions of a, and b, are

a, =9_ﬂ7—_1 713.0“,%[%] —(-gjn , (3-26)

cf.(2-17)
_ap-tf 1, 1Y [ _aY
el 5

4. Arbitrary Regular Polygon

Inaregular G-gon P (P P,Ps5..., P;) (G2 3) of side length 1, there are N;= G(G
—3)/2 diagonals altogether. They are classified into D (= g— 1) kinds, where g=[G/
2] and the symbol [x] stands for Gaussian operation of taking the maximum integer
not exceeding x. For a while, for simplicity, G is confined to a prime number and
then D = (G - 3)/2.

The unit of angle is chosen as 6 = /G. The circumradius R and the length of
nth diagonals d,, are respectively given by
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and d, = sm(r'l+ 1)0

R=—
2sin6 sinf

(n=1,2,...,D). (4-1)

Anassociated star polygon, (G/n)-gon P® (PP ,,P112s.-,PG_Pg), is defined as the
regular figure obtained by connecting vertices with all the diagonal of (n—1)th kind
when counted from the shortest.

Draw all the diagonals of a regular G-gon where G is an integer. Any two of
Ny diagonals cross each other. The number of such cross points inside P is GCj. It
is obvious that the angles and the lengths of segments appearing in it is very
restricted as in the cases of pentagon in Section 2 and heptagon in Section 3. The
similar relations are expected for any G.

Now, G is not necessarily a prime number. It is convenient to regard a side
length 1 as the 0-th diagonal and take the first diagonal d; as the variable d.

sin26

sin

dy=1and d=d, = =2cos6. (4-2)

By repeating application of addition theorem of trigonometry, an arbitrary d,, is written
as a polynomial of d as

[n/2] n—m)! 2
d, = ZO (—1)’"55(7#)!41"— m (4-3)

It should be pointed out that sequences {f,k)} in Eq. (1-6) and the length d, as a
function of d given in Eq. (4-3) are very similar to each other. Comparing d,(d) with
f»+1(k), the only difference is that the coefficients in Eq. (1-6) are positive definite
and those in Eq. (4-3) are alternating in signs. The explicit form of d, are

d, =d* -1,
dy=d*-2d,
d, =d* -3d* +1,

(4-4)
ds=d° —4d> +3d,

dg=d® —5d* +6d* -1,
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d, =d’ —6d° +10d° - 4d.
These polynomials are unified in the form of a generating function

] o0
————=>dz". 4-5
1—dz+ 2% ,E) n ( )

It is a special case of Gegenbauer polynomials whose generating function is given
by

[1—2tz+22]_v = iCn"(t)z", (4-6)

and the general form is

C)(t)= (&) F(H%)F(“ V) (1"2)(1/2)_v < {(l—tz)nw_(m)]- (4-7)

n n
2 F(2v)F(n+ v+%) n! dt

The function is closely connected with the Chebychev’s polynomials of the second
kind U,,(¥) which is defined by

LS A (4-8)

1-2tz+z )

Our d,, can be written in terms of Gegenbauer function of v=1 and ¢ = d/2 as well
as in terms of the Chebycheff’s function of second kind

d,,=C,‘,(d/2)=M—. (4-9)
1-(d/2)
An identity
d,p+d,_, =2d,cosk6 (4-10)

is easily proved for any integer & as
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_sin(n+k+1)0 N sin(n—k+1)0 _ 2coskBsin(n+1)6

l.h.s. hs. (4-11
y sinf sinf sinf rohos. )
The recursion formula Eq. (4-10) for k=1 is

d,.+d, | =dd,. (4-12)

It should be compared with Eq. (1-7). It is another expression of the fact which was
pointed out below Eq. (4-3). However, more essential fact behind them is still open
question.

So far, n is regarded as no upper bound. The relations are valid in general for
any regular G-gon. Now, let us specify the value of an integer G, then

dG—l = O (4 - 13)
which are equivalent to

dp_, =dp,i,, ifGisodd,

(4-14)
dp_,=dp,, ifGiseven,
for any n. Explicitly, as
G=5, d =d,, d=d*-1, d=1=16180,
G=6, d=d;,, d=d’-2d, d=A3=17321, d,=2,
(4-15)
G=7, dy=dy, d*-1=d’-2d, d=a=18019, d,=p=2.2470,

G=8, dy=d,, d*-1=d*-3d*+1, d=+2++2 =18478,

dy =1+~2, dy=+4+2+2.

The explicit forms of the generating functions for some values of G are summarized
in Table 1.

Let us introduce the matrix representation as the previous cases in Sections 2
and 3. For a given G, (D+1)-dimensional space is convenient, where D = [G/2] —
1 was introduced at the beginning of this section. 4 [(D+1)x1]-matrix d is defined
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Table 1. Some examples of the generating function of diagonal lengths for G-gon.
G=3 1 3_ 4 l+z
=l+z-2"-2"+ =
=1 1—z+2° meE 142
- 2
G=4 % =142z+22 -2 -2 -0+ =1+‘/_ﬁ
(d=\ﬁ) 1-2z+z 1+2%
G=5 1 5 sltm+t - - :1+U+TZ2+ZJ
(d=1) I-1z+z 14z
G=52 ll sr4z-Z -+ - - r+z—z25— w’
(do=7) 1-—z+2% 1-z
d=1) T
G=6 1 , 1Bz 4222 43P+ - O 1443242224432+ 2
(d=‘/§) 1-3z+z 1+2°
G=17 1 . =l+az+pl+ Bl vzt 420 -2 - :l+az+ﬁzz+ﬁzs+a:4+zs
d=a) l-az+z 142/
G=72 ﬁa —a+fi+t Pt - ral+ :a+ﬂz+zz~z3Aﬁz4—az5
(dg=0) 1-2z422 1-z
@=p “
G=17/3 B =B+z-at—a +2t + B~ - =ﬁ+z—czzzz—ot:3+z4+ﬂz5
(dp=P) 1-—z+7? 1+2
(d=1)
as
dy
d
1
d=| ", (4-16)
dp

D forward matrices A, (n

0

S = O =

(=]

00
1 0
0 1
1 0
0

S O O O

(=]

(=N - =)

(= =

o

- o = O

S = O =

o

_—0 = O

S O O O

—

—_——_ = O O O O

1,2, ..., D) of [(D+1) x (D+1)] are defined as
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000 O 01

0 00O 11

00 00 11
Ap,=|0 0 0 0 1 1} (4-17)

1

011 11

1 - 111
cf.(2-8)
cf.(3-10)

It is easily seen that they are natural extension of T in Eq. (2-8) and A and B in Eq.
(3-10). It is noted that these matrices can be regarded as the difference equations
which describe the wave propagation on a one-dimensional lattice consists of just
G-1sites. If (G-1) x (G—1) matrices were used, then the situation is more transparent
to see. Taking the symmetry into account, they are reduced into Eq. (4-17). It
corresponds to take only symmetrical waves with respect to the mid point. Now, the
form of Eq. (4-1) will be more easy to see: d, can be regarded as the value of the
wavefunction at the site n.

All the matrices A,’s have common eigenvectors. For example, the vector d
given in Eq. (4-16) is an eigenvector of A, associated with the eigenvalue d,,

A,d=dd. (4-18)

It is equivalent to the fact that any product and any quotient of d,s expressed as a
linear combination of d,’s and 1 with only integral coefficients as in Eq. (3-3).

Some infinite sequences are generated in powers of A, though no description
is given any more.

5. Concluding remarks

The self-similar nature among the set of the diagonals of a regular polygon has
been mainly investigated from a general point of view. Two remarks were given
below, one was connected with beauty and the other was connected with a
quasicrystal which gave the motivation of this study to the author as mentioned at
first.

5.1 Golden ratio and aesthetics
The relation between the golden ratio and aesthetics has been pointed out since
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ancient time. For example, the golden rectangles are believed as the most beautiful
rectangle. How do constants o and B relate with beauty from this point of view? An
attempt is given in Fig. 4. It is a cube seen from an infinite distance in the direction
1:0.:p relative to three edges. It is noted that the ratio 1:a::p appears in the ratio of
the areas of three rhombuses which are seen as the faces of a cube in Fig. 4.

/

Fig. 4. A view of a cube from an infinite distance in the direction of (1, a, B). Is it the most beautiful
direction? The ratio of the areas of three rhombuses that can be seen three faces of a cube is 1:a.:3.
The figure is useful in constructing the arrangement (5-4) by so-called projection method.

The personal view by the author is the following. Watching a golden rectangle
and another one which is slightly different, one can not tell which is the golden
rectangle. In a more complicated figure, however, if the golden ratio is used
somewhere in it then the ratio can be expected to appear everywhere in the same
figure because of the self similarity associated with golden ratio. In such cases,
difference can be told easily. The beauty connected with the golden ratio lies in the
mathematical facts. Therefore, itis natural that Fig. 4 does not look so beautiful even
if the ratio 1:0.:3 really associates some beauty.

5.2 A tiling with three elements

Before closing this paper, an attempt concerning with a one-dimensional
aperiodic structure is mentioned. The technique of obtaining the arrangement is a
standard one in the study of quasicrystals, a projection method.

Chose a point (a, b, ¢). An infinitely long hexagonal cylinder is defined by six
planes as
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(x—a)—y—b<l, y—b_z—c<i’ Z_c—(x~a)<-1—,
a B« B B
(5-1)
Yob (poayed, Zzeyzb 1 gitey,
a o B a B Jij

Taking all the lattice point inside of the cylinder, throw all the others away. Then
only one site

X+y+z=n (5-2)

remains for every integer n. Project the remaining sites to a straight line

x—a=2"%_ . (5-3)

Now an aperiodic arrangement was obtained. There are three kinds of separations
S=3+a+2B)"2, M=aSand L= fS. Starting from the site for a proper value of
n, the remaining sites can be described by the direction of the step corresponding
to An = 1. Separation S corresponds to the step in x direction. Separation M
corresponds to the step in y direction. Separation L corresponds to the step in z
direction. A part of an infinite arrangement with 100 separations is shown below

eeo LMLSM LMLSM LLMSL MLMSL MLLMS LMLSM LMLSL
MLMSL MLMLS LMLMS LMLSM LLMSL MLMLS MLLMS
LMIMS LMLSL MLMLS MLMLS MLMLS LMLMS ...
(5-4)

where the values of three constants @, b and ¢ are properly chosen. The composition
ofthree composition, S, M and L tends to 1:a.: in the limit of infinitely large system.
The factisreflected in that the ratio of the area of three rhombuses in figure, is 1:a:3.

Only a single topic was described in this paper among three topics reported at
the symposium. The other two have been already published (Ogawa, 1987, 1989).
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