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Abstract. To characterize the topological features of the carbon atom skeleton, or
a graph (G), of a hydrocarbon molecule, a number of “topological indices” have
been proposed by chemists. The Z-index, Zg, proposed by the present author was
defined in terms of the non-adjacent number, p(G, k), and is closely related to the
characteristic polynomial, Pg(x), whose zeroes give the stability of conjugated
hydrocarbons. Matching polynomial, Mg(x), was also defined in terms of p(G, k)
and its relation with Pg(x) has been analyzed. Contrary to other topological indices
including Wiener’s w and p numbers, Zg and Mg(x) are shown to have a number
of interesting mathematical properties. The series of Zg and Mg(x) for certain series
of graphs are found to be transformed into typical orthogonal polynomials, e.g.,
Hermite, Laguerre, and Chebyshev polynomials. Relation between topological
indices and thermodynamic quantities of saturated and unsaturated hydrocarbon
molecules was discussed.

1. Introduction

More than ten millions of chemical substances have hitherto been known.
Most of them contain carbon atom(s) and are called organic compounds only with
afew exceptions (e.g. CO, CO,, HCN). Hydrocarbon molecules, composed of carbon
(C) and hydrogen (H) atoms and depicted as C,H,,, occupy the central part of the
whole family of organic compounds. A saturated hydrocarbon is a hydrocarbon that
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can no longer bind with more hydrogen atoms without destroying its carbon atom
skelton. The others called as unsaturated hydrocarbons, such as benzene (see Fig.
1), carry free electrons, and show interesting electronic and sometimes magnetic
properties.

The topological structure of a molecule is conventionally expressed by the
structural formula composed of the atomic symbols for the components and
connecting lines for the chemical bonds, or adjacency relations between the
component atoms. In a structural formula, saturated bonds were expressed by single
lines while unsaturated bonds were sometimes depicted by multiple lines depending
on the degree of unsaturation.

If one substitutes all the atomic symbols and multiple lines of the structural
formula into points (vertices) and single lines (edges), respectively, one gets
nothing else but what is called a connected undirected graph defined in the graph
theory (Harary, 1969). One may call this graph a molecular graph (Balaban, 1976;
Trinajsti¢, 1983; Gutman and Polansky, 1986). Further, in many cases, all the
vertices representing hydrogen atoms and the incident lines are suppressed to give
smaller graphs. In Fig. 1 are given the molecular formulas, structural formulas, and
molecular graphs (of the carbon atom skeletons) of saturated and unsaturated
hydrocarbon molecules, butane and benzene, respectively. Incidentally, the two
graphs are respectively the members of the path graph (Sy) and cycle graph (Cy).

A graph G composed of N points can be represented by an adjacency matrix
A (N x N), whose element 4;; is either 1 or 0 depending on the adjacency relation
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Fig. 1. Molecular formula (a), structural formula (b), and molecular graph (c) of butane (I) and benzene
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of pointsiandj (Fig. 2). The distance matrix D can also be defined with the element
D;; representing the number of the shortest walk between points i and j. The three
mathematical objects G, 4, and D are equivalent. Namely, the two matrices have
the same information content to reproduce a given graph G. In an attempt to get
more compact quantity, such as a set of numbers characterizing the topological
structure of a graph, the characteristic polynoial Pg(x) has been defined as

P.(x)=(-1)"det(A - xE) (1)

where E is the unit matrix of the order N (Cvetkovié¢ et al., 1979). The characteristic
polynomials of the two graphs given in Fig. 1 are, respectively,

x*=3x2+1 and x®-6x*+9x* -4

Although for smaller N, say smaller than six, Pg(x) uniquely corresponds to the
respective graph, a chance that more than two different graphs have the same Pg(x)
rapidly increases with N. The set of graphs with the same P(x) are called isospectral
or cospectral with each other. Algorithms for constructing as many isospectral
graphs have been proposed (Herndon, 1974). The next problem is to seek effective
indices with smaller bits of information for characterizing the topological nature of
a molecular graph.

1
0
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0
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Fig.2. Graph (G), adjacency matrix (A), and distance matrix (D) of the carbon atom skeleton of butane.
Note that butadiene C,H, has the same G, A, and D as butane.

2. Topological Index

In 1971 the present author proposed to define the so-called topological index,
Zg, for characterizing the topological nature of saturated hydrocarbon molecules,
as
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Zs=3.p(G ¥) @

where p(G, k), the non-adjacent number, is the number of ways for choosing & (<
m=[N/2]) disjoint lines from a given graph G, p(G, 0) being defined to be unity for
all the graphs (Hosoya, 1971, 1973).

Later, so many different versions of topological indices have been proposed
mostly by chemists that nowadays the term “topological index” is used as the
general name for those indices (Balaban, 1976; Trinajsti¢, 1983; Gutman and
Polansky, 1986). Thus, in this paper, we call the Zg of Eq. (2) the Z-index.

It is convenient to define the following Z-counting polynomial Qg(x) as

06(x) = é”(G et (3)

with which Zg is obtained to be Qg(1).
For the two graphs, I and I1, given in Fig. 1 one can easily obtain Qg(x) and Z,
respectively, as

I Os(x)=1+3x+x? Z;=5

1 Os(x)=1+6x+9x* +2x° Z;=18

As shown in Tables 1 and 2, the Z-indices of the path graphs and cycle graphs
are known to form, respectively, the Fibonacci and Lucas numbers, namely,

Z(Sy) = Fy (4)
Z(CN) =Ly (5)
with
Fy=Fy_+Fy, (N=2)
(Fibonacci numbers)  (6)
F=F =1
and

Ly=Ly +Ly, (N22)
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Table 1. Non-adjacent numbers p(G, k)’s and Z-index of path graphs Sy’s.

p(GK)

o0—o

4N
M 1 4 3 8
M/ 1 5 6 1 13
7 M/\a 1 6 10 4 21
8 W 1 7 15 10 1 34

(&)]

»

(Lucas numbers)  (7)
Ly=2 L =1

Useful recursion relations are found for p(G, k), Qg(x), and Z-index by using
the inclusion-exclusion principle as follows (Hosoya, 1971, 1973):

p(G k)= p(G-1 k)+ p(GOI k-1) (8)
06(x) = Qg1 (x) + xQgey (%) %)
Lo =271+ Zge (10)

where G-/ means the subgraph of G obtained by deleting the edge /, and G®! the
one by deleting / and all the lines incident to / (Hosoya and Hosoi, 1976). Note that
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Table 2. Non-adjacent numbers p(G, k)’s and Z-index of cycle graphs Cy’s.

P(G.k)
N Cn k=0 1 2 3 4 Za
3 A P s 4
4 D 1 4 2 7
5 ‘Q 1 5 5 11
6 c{:} 1 6 9 2 18
7 Q 1 7 14 7 29
8 O 1 8 20 16 2 47

the second term in the right-hand-side of Eq. (9) is multiplied by x.

A connected graph without any ring is called a tree graph, while the one with
at least aring a non-tree graph. The characteristic polynomial Pg(x) already defined
in Eq. (1) for a tree graph can be expressed in terms of p(G, k)’s as follows (Hosoya,
1971, 1972a):

Py(x)= D (-1)*p(G k)x" "% (G etree) (11)

k=0
while for a non-tree graph, one can show the following relation between Pg(x) and
p(G, k)’s for G and all the set of the subgraphs of G obtained by deleting the

component ring R; in G'

rings

£ (2 k_io(-m" p(GOR, k)", (12)

The first summation in the second term of the right-hand-side of Eq. (12) runs over
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{R;’s}, which are not only all the component rings but also all the possible
combinations of disjoint rings in G. The symbols #; and r;, respectively, stand for
the numbers of points and components of R;.

The characteristic polynomial of a graph turns out to be equivalent to the
secular determinant, det (H-Sg), used in the Hiickel molecular orbital (HMO)
method for calculating the n-electronic structure of conjugated hydrocrbon mol-
ecules, through the transformation, x = (o — €)/p, where o and [ are the elements
of the matrix H, respectively, for the component atoms (diagonal) and bonds (off-
diagonal) ofthe molecular graph G, and S is assumed to be diagonal (S;; =&;;) (Hiickel,
1931).

The Z-index and P(x), as well as other topological indices, are known to be
useful not only for characterizing the topological nature of molecules but also for
explaining and predicting various properties of molecules and substances (Balaban,
1976; Trinajsti¢, 1983; Gutman and Polansky, 1986; Hosoya, 1971,1972b; Hosoya
et al., 1972; Gao and Hosoya, 1988).

In this respect, the modified Z-index, Z » has been defined through Pg(x) but
not through p(G, k) numbers as

ZG =(’i)NPG(i)~ (13)

For tree graphs, Z is identical with Zg, whereas for non-tree graphs, their differ-
ence AZg = ZG — Z for the graphs of conjugated unsaturated hydrocarbon mol-

ecules, such as butadiene and benzene families, plays an important role for
predicting the stability of molecules (Hosoya et al., 1975).

3. Matching Polynomial and Orthogonal Polynomials

Independently by many groups of researchers, the matching polynomial has
been proposed to be defined in terms of the p(G, k) numbers as follows (Aihara,
1976; Gutman et al., 1977, Farrell, 1979):

Mo (x) = é(—l)"p(a k)xN-2k, (14)

As evident from Eq. (11) Mg(x) is identical to Pg(x) for tree graphs. The dif-
ference between Pg(x) and Mg(x) for non-tree graphs is expressed by the second
term of Eq. (12) in terms of the p(G, k) contributions from the component rings.

It was shown that the matching polynomials of several series of graphs have
close relationships with the typical orthogonal polynomials (Heilman and Lieb,
1970; Gutman et al., 1977; Farrell, 1979). The Mg(x)’s of the path graphs (Sy) and
cycle graphs (Cy) given in Tables 1 and 2 can be transformed, respectively, into the
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Chebyshev polynomials of the second and first kinds, Uy (cos6) and Ty (cos6).
Namely, if they are defined as

Uy (cos) = sin(N +1)0 / sind - (15)
Ty (cosB) = cosNG, (16)

one gets the following relations

M;, (x)=Uy(x /2) (17)
M (x)=2Ty(x /2). (18)

The complete graph Ky is defined as the graph in which all the N vertices are
connected to each other (Harary, 1969). The matching polynomial of Ky can be
transformed into the Hermite polynomial Hy as follows (Table 3):

My (x)=2""2Hy(x /2), (19)

where Hy, is defined as follows:

Table 3. Relation between the Hermite polynomial and the matching polynomial of complete graphs
Ky's.

N Ky MK (x) HN(x)

x2- 1 4x2- 2

x3- 3x 8x3- 12x

o
o—o0
4 CA x4 6x2+ 3 16x4- 48x2+ 12

x5- 10x3+ 15x 32x5- 160x3+ 120x
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Table 4. Relation between the associated Laguerre polynomial and the matching polynomial of
complete bipartite graphs K, y’s.

M N Kyn My ® LNM'N(x)
2 1 v x3- 2x x-2

3 1 \VO x4- 3x2 x+ 3
3002 W x3- 6x3+ 6x $x2- 3x+ 3
4 2 W x6- 8x4+ 12x2 Ix2- 4x+ 6

M, ®= L= M} LNM'N(xz) (M 2N)

Table 5. Relation between the Laguerre polynomial and the matching polynomial of complete bipartite
graphs Ky \'s.

N Knn M, (0= (= D'NIL(O)

x2-1

x4- 4x2+ 2

P
I
X
]

x8- 16x5+ 72x%- 96x2+ 24
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Hy(x)= (—I)Nexp(x2 )dN / dx™ {exp(—x2 )} (20)

A bipartite graph is defined as a connected graph with two classes of vertices,
say M white and N black ones, such that no two vertices in the same class are
connected. A complete bipartite graph denoted as K,  is a bipartite graph in which
all the M and N vertices in the Two classes are connected with each other.

The matching polynomial of the complete bipartite graph K, v is shown to be
identical with the associated Laguerre polynomial L,/ (x2) as follows (Table 4):

My, = (=D NxM N /NN (x?), (21)
CIOE(EN (A (2)

For a special case with M = N the matching polynomial exactly corresponds
to the Laguerre polynomial Ly as in Table 5.

4. Structural Dependency of Molecular Properties

Based on a tremendously large amount of knowledge of experimental facts on
the properties of chemical substances, chemists have abstracted various empirical
relationships between thermodynamic properties and the topological structure of
molecules, especially of organic molecules. Although this problem by itself'is very
important in the understanding of the nature, prediction of a given thermodynamic
property of a substance from the first principle is a challenging but extremely
difficult task, since it is an outcome of the cooperative phenomena of randomly
moving 1019~ 1020 particles under the combination of various physical conditions,
say, temperature, pressure, and volume. Recently, from some pragmatic motiva-
tions, study on this type of correlation if refocussed by drug-designing chemists and
is called quantitative structure-activity-relationship, or simply as QSAR.

Our standpoint is a little different from eighter of both the sides explained
above. By analyzing the correlation between the physico-chemical properties of
molecules and mathematical properties abstracted from the topological structures
of molecules, one would be able to find a breakthrough toward the goal.

In Table 6, the relation between the boiling points and the Z-indices of the nine
isomers of heptane, C;H ¢, are given (Hosoya, 1971; Hosoya et al., 1972; Narumi
and Hosoya, 1985). It is interesting to observe that the boiling point decreases with
the degree of branching of the molecular skeleton in proportion to the value of the
Z-index, and nine distinct integers from 13 to 21 were assigned to all the family of
isomers. The entropy, AS°, of these hydrocarbons is found to be also in parallel with
ZgasseeninFig. 3, where other thermodynamic properties of these isomers are also
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Table 6. Relation between the thermodynamic quantities (boiling point, bp, and density of liquid, d) and
the two topological indices (Zg and p) of heptane isomers.

P(G.k)

Graph k0 1 2 3 Zs bp(C) p d(209C)

1 0—0—0—0—0—0—0 1 6 10 4 21 98.4 4 0.6838
o)

2 O_O_CCO 1 6 9 4 20 934 6 0.6982
3 o—o—g—o—o—o 1 6 9 3 19 91.9 5 0.6871
4 o—i—o-o-o—o 1 6 9 2 18 90.0 4 0.6786
5 O—i—i—o—o 1 6 8 2 17 89.7 6 0.6951
6 0-0%0-0 1 6 7 2 16 86.0 6  0.6933

7 O—g—o—i—o 1 6 8 0 15 80.5 4 0.6727

8 °§‘°‘°‘° 1 6 7 0 14 79.2 4 06739

9 0%‘1'0 1 6 6 0 13 809 6  0.6901

plotted and compared with two other topological indices, Wiener number, w, and
path number, p, or ps.

The indices, w and p, were proposed by Harold Wiener in his pioneering
papers of QSAR on thermodynamic properties of saturated hydrocarbons in 1947
(Wiener, 1947), just in the same year as Nobert Wiener introduced his cybernetics.
The half-sum of the off-diagonal elements of D for G is w (Hosoya, 1971), while
pis halfthe number of such matrix elements with D;; = 3, namely the number of pairs
of vertices whose shortest distance is three. Correlation between Zg and w is fair but
not so good, whereas p has no correlation with them at all.

Itisclear from Figs. 3aand b that there are two distinct types of thermodynamic
properties of these hydrocarbons, i.e., A-type being correlated well with Zg or w,
and B-type with p (Narumi and Hosoya, 1985). We can give a qualitative
explanation for the good correlation between Zg and the A-type properties, i.e.,
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Fig. 3. Correlation between various thermodynamic quantities and topological indices of heptane
isomers. (a) A-type properties dependent on Z and (b) B-type on p (See text).

boiling point (bp), enthropy (AS°), heat of formation (AHy), and heat of vaporization
(AH,), as follows. With the increment of branching, the degree of freedom of the
internal rotations around each CC bond decreases, lowers the specific heat, and also
lowers the entropy. Parallelism between the entropy and boiling point is easily
understood (Narumi and Hosoya, 1980). The A-type properties were interpreted to
be governed by dynamical features of the topological structure of molecular
skeletons.

On the other hand, the B-type properties, with a good correlation with the
index;, e.g., the density of liquid, d, refractive index, np, critical pressure, pc, etc.,
are largely governed by the static features of the topological structure of molecules.
Namely, the value of these properties reflects some degree of close-packing of
molecules whose behavior looks something like that of rigidly moving particles in
a vessel of a given volume.

As has been mentioned before, the Z-index for large conjugated hydrocarbons
such as polyenes and polycyclic aromatic hydrocarbons is shown to have a good
correlation with their n-electronic properties as the bond order and -electronic energy
(Hosoya and Hosoi, 1976; Hosoya et al., 1975).
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