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Theoretical Study of Growth Patterns of Snow Crystals

Etsuro YOKOYAMA* and Toshio KURODA

Institute of Low Temperature Science, Hokkaido University,
Sapporo 060, Japan

Abstract. When a crystal grows under a given growth conditions, its external form
changes with time and a pattern is formed as a whole. As is well known, many
beautiful patterns are formed in response to various growth conditions. We propose
amodel of pattern formation in the growth of snow crystals, that takes into account
the surface kinetic process, for incorporation of water molecules into a crystal and
the diffusion process, and produce various patterns such as circular patterns,
hexagonal patterns and dendritic patterns starting from an initial circular crystal.
We finally obtain a phase diagram showing a relation between growth patterns of
snow crystals and growth conditions given by the dimensionless crystal size £
relative to the mean free path of a water molecule in air and the supersaturation o,
at-15°C.

1. Introduction

Growth forms of snow crystals remarkably depend on the growth conditions
such as supersaturation and temperature. One should note furthermore, that each
crystal changes its external form during growth under definite environmental
conditions, namely pattern is formed. A spherical single ice crystal of the order of
1-10 pm in radius is formed by freezing of a supercooled water droplet in cloud,
then it grows into a hexagonal prism bounded by two basal {0001 }- and six prism
{1070}-faces by adsorbing supersaturated water vapor. The hexagonal prism
develops further into various patterns, e.g., plate, column, dendrite, needle etc.,
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according to the growth conditions in the cloud (Nakaya, 1954; Kobayashi, 1961;
Kobayashi and Kuroda, 1987) as shown in Fig. 1.

The purposes of this paper are to simulate the pattern formation in growth of
snow crystals, controlled by a diffusion process for supplying the water molecules
inair, toward the crystal surface and a surface kinetic process for incorporating them
into crystal lattice, and to understand how these processes play roles in the pattern
formation.

We treat the formation of various patterns starting from a circular single ice
crystal, perpendicular to c-axis at —15°C, which is a typical temperature for the
development of dendritic pattern crystal. For the details of the simulation and the
analysis of the produced patterns, reader may refer to the paper (Yokoyama and
Kuroda, 1990).

On the other hand, basic habit of snow crystals bounded by two basal and six
prism faces changes with decreasing temperature: plates to columns at —4°C,
columns to plates at —10°C and plates to columns at —22°C (Fig. 1). Kuroda and
Lacmann (1982) proposed a new interpretation of the habit change based on a
viewpoint of surface melting and surface roughening which are expected to occur
on basal and prism faces of'ice crystals at different temperatures respectively. After
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Fig. 1. Schematic representation of variation of growth patterns of snow crystals with growth conditions.
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the proposal, ellipsometric study of the surface structure of ice has been carried out
by Furukawa et al. (1987), and it was found that surface melting occurs at —2°C on
basal face and at —4°C on prism face. The measured temperature dependences of the
thickness of quasi-liquid layer for each surface which was produced by surface
melting are qualitatively in good agreement with theoretical predictions by Kuroda
and Lacmann (1982). However, the measured transition temperatures of surface
melting are higher than those assigned for interpretation of the habit change. Thus,
the habit change of snow crystals should be theoretically pursued further.

2. Model and Simulation of Pattern Formation by Means of Boundary Element
Method (Yokoyama and Kuroda, 1988, 1990) o

The growth rate ¥y determined by a surface kinetic process in the direction
normal to the surface is given by

" :ﬁ(O,O'S)O'S, (1)

where oy is the surface supersaturation and B(6, o) is the kinetic coefficient de-
pending on arotation angle 6 around c-axis ofhexagonal ice crystal and o,. The kinetic
coefficient (6, o) has six minima at 0°, £60°, £120°, 180° corresponding to six
prism faces, i.e., singular surfaces. If the minima are deep enough, anisotropy of
growth rate is so strong that prism facets develop their area during growth. We
consider only the spiral growth occurs with the aid of screw dislocations. Furthermore,
the steps are supplied from screw dislocations emerging at the center of six prism
faces until a circular crystal develops into a perfect hexagon, and they are generated
at its corners where the supersaturation is largest, once a perfect hexagon has been
developed.

It is to be noted that anisotropy of B(6, o) is weakened and the area of facets
decreases with increasing o which is controlled by the diffusion process and the
surface kinetic process.

On the other hand, the growth rate V; determined by the surface kinetic process
should be equal to the growth rate ¥y determined by the volume diffusion process
under steady state conditions (Seeger, 1953; Kuroda et al., 1977).

The supersaturation ¢ in the region surrounding a crystal is governed by the
diffusion equation

Ao=0 (2)
subject to the boundary conditions: the supersaturation is specified by

o=0, (3)
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on the boundary I'; which is far from the crystal, and the mass conservation
conditions mentioned above, i.e.

Ve=Vy (4)

is required on the boundary I'; representing the crystal surface.

We solve the problem by the boundary element method as follows. At first, we
obtain the boundary integral equation from Eq. (2). Using Green’s theorem and
boundary conditions:

, kTB(6,0)

Osi /2+ jalongl"z i:q* +0 cheD

}osdr =L atongr, (qwo* - O'mq*)dl", (5)

where o is the supersaturation at a point i on I', g,, the normal gradient of su-
persaturation on I'}, o* satisfies Ac* + §; = 0 (;: the Dirac delta function at a point
i), g* is 6c*/0n, D the diffusion coefficient of water vapor, v, the volume of amolecule
in crystal and p, the saturated vapor pressure of crystal. Then, we change the Eq. (5)
to the algebraic equations with respect to o, under the assumption that I' is far from
I',. By solving the algebraic equations, we obtain o, consequently the growth rate
V (= V= V4) at each position on the surface at a certain moment and then determine
a shape of the growing surface after At second.

3. Results

The important numerical values used for the simulation are as follows: T=258.
15K (=-15°C), step energy k = 2.0 x 10-¢ erg/cm, mean surface diffusion distance
x,=400d, step height or lattice constantd=4.5 x 10-8 cm and radius of initial crystal
Foo=5x 1073 cm.

Figure 2 shows an example for small value of diffusion coefficient D =
0.2 cm?/s of water molecule in air (corresponding to 1 atm, i.e., 1.01325 x 10° Pa)
and low supersaturation o, = 8.5% at the position far from the crystal. An initial
circular crystal becomes a perfect hexagon at 1200 s, since anisotropy of kinetic
coefficient B(0, o,) is large because of small supersaturation o at the crystal surface
for given D and o,.. The supersaturation along the hexagon is not uniform, i.e., o
=0.7% at its corners and o, = 0.6% at the center of each flat surface at 1200 s. In
spite of the non-uniformity, the crystal can continue to grow retaining its polygonal
shape by following compensation mechanism (Chernov, 1974): The steps nucle-
ated at corners slow down as they approach the center of the surface because of a
decrease in local supersaturation and consequently the step density increases near
the center. Since an increase in the density of the steps at which the molecules are
incorporated into the crystal causes a larger kinetic coefficient (6, o), the growth
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Fig. 2. Development of prism faces, i.e., hexagonal pattern for D = 0.2 cm?/s(corresponding to 1 atm)
and o,, = 8.5% (after Yokoyama and Kuroda, 1990.)

rate V} can be constant over the whole surface. Namely, the stabilizing factor of a
polygonal crystal is the variation of the local kinetic coefficient by adjustment of
step distribution, while the destabilizing factor is the non-uniformity in super-
saturation over the surface which is caused by the diffusion processes.

Figures 3 and 4 represent examples of dendritic pattern for larger supersatu-
rations o,, and the same small D as the Fig. 2. When an initial circular crystal has
become a perfect hexagon in Fig. 3, the growth rate at the corners is larger than that
at the center of the surface, because of too large non-uniformity in surface
supersaturation (o, = 2.9% at the corner and 6, = 2.0% at the center), which cannot
be compensated by step adjustment, and consequently preferred growth at the
corners begins. This is onset of transition from a hexagonal to a dendritic pattern.
Furthermore, the dendritic pattern becomes more remarkable for much larger 6, =
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Fig. 3. Dendritic pattern for D = 0.2 cm?/s and o, = 17% (after Yokoyama and Kuroda, 1990).
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Fig. 4. Dendritic pattern for D = 0.2 cm?%/s and 6, = 34% (after Yokoyama and Kuroda, 1990).

Fig. 5. Circular pattern due to kinetic roughening for D = 40 cm?/s (corresponding to 500 Pa of air
pressure) and o, =17% (after Yokoyama and Kuroda, 1990).

34% as shown in Fig. 4. It should be noticed that six primary branches have periodic
structure at the tips which is caused by bunching of monomolecular steps. Such
bunches may play a role in the formation of secondary branches, because super-
saturation has local maximum at the bunches.

On the other hand, an initial circular crystal cannot develop into a hexagon for
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large D =40 cm?/s (corresponding to 500 Pa of air pressure, i.e., about 5 x 10-3 atm)
and large o, = 17% (Fig. 5). The surface supersaturation does not drop largely (o,
= 14% at 0 s) from o,, because of easy supply of molecules at larger D, so that
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Fig. 6. Hexagonal pattern for D = 40 cm%/s and o, =3.5% (after Yokoyama and Kuroda, 1990).
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Fig.7. Diagram showing the relation between the patterns and growth conditions (o, £) (after Yokoyama
and Kuroda, 1990).
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anisotropy of the kinetic coefficient vanishes. We call a vanishment of growth rate
anisotropy due to such kinetic reason the kinetic roughening (Yokoyama and
Kuroda, 1988, 1990). If supersaturation c,, is very small (e.g. 3.5%), however, the
anisotropy is so large even at larger D, that an initial circular crystal becomes a
perfect hexagon within 79 s, and then the crystal grows retaining its flat surface (Fig.
6).

We analyzed the patterns produced by the simulation i.e., circular pattern,
hexagonal pattern and dendritic pattern, and found for the first that the dimensionless
crystal size L relative to the mean free path of a water molecule in air plays an
important role in the pattern formation of growing snow crystals (Yokoyama and
Kuroda, 1990). Figure 7 is the phase diagram showing a relation between growth
patterns of snow crystals and growth conditions given by o, and £ at —15°C.
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