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Abstract. Mechanical properties such as elasticity, plasticity and viscoelasticity of
two-dimensional random cellular structure are studied by computer simulations of
vertex models. We found that plasticity and hence hysterisis effects are intimately
connected with topology changing processes of the cellular structure. The viscoelastic
response of the system to externally applied uniform strain is also investigated and
a scaling law in the stress-strain relationship is verified for small shear rates.

1. Introduction

Space-filling irregular cellular patterns form a class of random patterns most
commonly found in nature as well as in various man-made materials (Weaire and
Rivier, 1984). Their investigation is important not only for our understanding of
some aspects of nature but also for better control of materials properties*. Knowing
static and dynamics properties of elements constituting a cellular structure, we
would like to develop statistical mechanics for dealing with systems consisting of
large numbers of cells. Despite its importance, progress here has been rather limited
so far. This is especially the case for highly disordered cellular patterns. These are
strong correlations in the system imposed by the space-filling condition and no
smallness parameter of expansion exists. Thus, up to now the most detailed
knowledge of random cellular patterns was obtained by computer modelling. Here,
one faces a dilemma of small system sizes for realistic simulation models and large

* See for instance New York Times, March 20, 1990.
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system sizes for mutilated simulation models (Anderson and Rollett, 1990). Under
such circumstances we have been studying properties of partially mutilated
simulation models, the so-called vertex models, which still keep full topology of
cellular structures (Nagai and Kawasaki, 1991). Our past studies, however, have
focused on irreversible time evolution where cell boundaries are steadily reduced.
In this article we report on our more recent studies on response of the system to
external distortions whereby we hope to gain some insight into mechanical
properties of cellular structures.

2. Vertex Model

The vertex models for cellular structures were described elsewhere (Nagai and
Kawasaki, 1991) and here we only show the equation of motion of one such model
(the model O’) for two-dimension, which is the model actually employed in this
work. The system consists of a set of verticesatr;, i =1, 2, ... which are intersections
of three straight cell boundaries. Their velocities v; are then given by
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Here L is a positive constant, r; =r; — r;, F. 5 = ryllrjl, n<> is the unit normal vector
of the bond <ij> and the summations are over the vertices j connected to the vertex
i by single bonds. Eq. (2-1) must be supplemented with the rules for topology
change whenever a bond length shrinks to zero. There are two kinds of processes
T1 and 72. The model is supposed to describe time evolution of two-dimensional
cellular network in which the surface tension is the only driving force and the
dissipation is associated with the motion of cell boundaries along their normal
directions. In actual systems like soap bubbles, however, important dissipation
arises from viscous flow of liquid within soap films near Platean borders (Kraynik,
1988), which is neglected here. Hence our present model does not describe any
realistic situation. On the other hand, most studies of realistic models made
unrealistic assumption of regular cellular structure (Kraynik, 1988), the only
exception being that by Weaire and coworkers (Weaire and Kermode, 1984; Weaire
and Fu, 1988). Thus, although our model is unrealistic for foam rheology, it has the
virtue of dealing with irregular cellular structures. In the following, we describe two
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kinds of computer simulations based on the vertex model.
3. Elastic and Plastic Properties

Since our vertex model defined in the proceeding section describes indefinite
time evolution of cellular structure towards the state of lowest free energy
consisting of a single cell, the model as it stands is not suitable for elasticity study.
In order to avoid this difficulty we artificially impose the condition that after certain
time area of every cell is fixed to be a constant (Kawasaki et al., 1991). Physically
this corresponds to supposing that transfer of incompressible fluid from one cell to
another is completely stopped after a certain time. This condition can be readily
incorporated by introducing a Lagrange multiplier A, for each cell a.. The equation
of motion is now written as
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where A, is the area of the cell a and the sum in the second term is over the three
cells which share the vertex i. See Appendix A formore details. Since in this section,
we will be concerned only with stationary states, the left hand side of Eq. (3—1) is
simplified where D is now a scalar constant.

The initial state of the simulation is prepared in the following way. First we
take cellular patterns which are in the scaling regime after undergoing sufficient
evolution in accordance with the model O equation of motion. We then let the
system evolve according to the modified dynamics with constant cell areas where
we monitor time variation of the free energy density E(¢) defined by

0= 2 0]/ 4 (3-2)

where 4 is the total area of the system. The sum is over all the pairs of vertices
connected by single bonds. The run is continued until the system reaches an
equilibrium defined by the following condition,

|E(r+8t)— E(r')| / E()<107° for t-108t<t'<t, (3-3)

where 0t is the size of a time step. This state is the initial state before distortion.
We now apply an elongational distortion by the following affine transforma-
tion
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x(s+1)=e’x(s), y(s+1)=e *y(s), (3-4)

where x(s), ¥(s) and x(s + 1), y(s + 1) are the coordinates of a material point before
and after the transformation, respectively, and € is the Hencky strain. Here s isanon-
negative integer and s = 0 for the initial state. We then let the system evolve with
the cell areas fixed until a new equilibrium state as defined by Eq. (3-3) is reached.
By repeating the process we obtain the energy as a function of the total Hencky
strain applied to the system.

The total number of cells in the initial state s = 0 was 493. The values of ¢
chosen were, € = 0.01 for 0 <5 <79 and € = — 0.01 for 80 < s < 159. Some of the
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Fig. 1. Cellular patterns after successive deformations and equilibrations. The Hencky strains are (a) 0.0
(b) 0.2 (c) 0.4 (d) 0.6 (e) 0.8 (f) 0.6 (g) 0.4 (h) 0.2 (i) 0.0.
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cell patterns during this deformation process are shown in Fig. 1. It is seen that a
pattern depends not only on the accumulated deformation ¢,(s) defined by &s for 0
<5 <80 and |¢|(160 — s) for 81 <5 < 160 but also on the past deformation history
(hysteris effects). This is more clearly seen by the energy E(f) written also as E(s)
or by the stress tensor t,g defined by

1 a
o =G LA (-9
ij

where f;; is the force acting along the bond <ij> given by — r,/ for the vertex model.
E(s) is shown in Fig. 2 and N,(s) = 7,,(s) — 1,,(s) is shown in Fig. 3. Figure 3 also
shows the frequency of T1 processes during the course of deformation (more
precisely, during each step s — 1 to s). These results show that for small enough
deformation where no 71 process takes place the system behaves like an elastic
solid, whereas at larger deformations where 7’1 processes occur the system shows
plastic behavior in agreement with the indication of Ashby and Verral (1973). The
topology changes are also responsible for the hysterisis effects.

We now note that besides the accumulated deformation one can also define the
intrinsic deformation g,(s) which reflects local changes of cell patterns rather than
the system as a whole and is defined by
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Fig. 2. Energy density plotted as a function of accumulated externally applied Hencky strain (A) and as
a function of internal Hencky strain g(s)(O). Arrows indicate directions of change.
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Fig. 3. Stress-strain relationship. The symbols are the same as in Fig. 2. Histograms show the frequency
of T1 processes. Positive (negative) histograms are for increasing (decreasing) Hencky strains.

&(s)= %m[z,c (s)/1,(0)]- % in[1,(s) /1,(0)} (3-6)

Here /,(s) is the average linear size of a cell in the direction o at the time step s. See
Appendix B for the precise definition. The results show in Figs. 2 and 3 also
demonstrate that the system apparently behaves as an elastic body against intrinsic
deformation with very little hysterisis effects. This is because the intrinsic defor-
mation is a state variable independent of the past deformation history.

4. Viscoelastic Properties

We now return to the unconstrained dynamics of Section 2 and investigate the
response of the system to the externally applied uniform rate of shear y represented
by the velocity field u(r) whose x and y-components are

u,(r)= 1, u,(r)=0. (4-1)

The friction at the vertex i in the vertex model is assumed to be associated with the
difference of v; and u(r;) so that Eq. (2—1) is modified to



Mechanical Properties of Vertex Model for Two-Dimensional Random Cellular Structures 383

U]

Di'["i‘"("i)]z“ ry (4-2)
J
Strictly speaking, the friction is associated with the difference of the velocity of an
element of the cell boundaries and u at that point. However, the error should be
negligible for sufficiently small velocity gradients. We simulated Eq. (4-2) using
the Galilei-transformed periodic boundary condition. The initial state was chosen
to be the matured state well in the scaling regime obtained using the original vertex
equation of motion and contained N,(0) = 9628 cells. The size of a time step 8¢ was

chosentobe 10-3/y and the short bond length cut-off for topology change was taken
to be A =20 6¢. Figure 4 shows shear stress 1,,(#; y ) as a function of total strain y ¢

for different values of y . Here the units of time and length have been chosen to be
L14/N(0) and [4/N.(0)]"2, respectively where 4 and N,(0) are, respectively, the
total system area and the total number of cells at the time zero. Fig. 5 shows the
behavior of the transient shear viscosity defined by

nt(6y)=14(t:7)/ 7. (4-3)
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Fig. 4. Stress-strain relation for evolving cellular structures under shear for various shear rates.
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Fig. 5. Effective viscosity as a function of applied strain for various strain rates.

Both t,, and " continue to decrease atlargest values of y #studied and a steady state
is unlikely. Thus we examined the possibility of scaling behavior like

T,W(t;y):}?afxy(j/t). (4-4)

In Fig. 6 we plot y ¢ rxy(t ; y) as a function of y ¢ for five values of ¥ between 0.1
and 2.0. Here a is taken to be the average of the values obtained in the region 0.1
<y <£2.0and2.0< y¢<10.0 and we find o= 0.496. This value is very close to 0.5
obtained by the following dimensional consideration. From Eq. (3—5) t,p scales as
F!,  being the characteristic length of cellular pattern. For small y we know that
I grows ast'2, Now, y has the dimension of 7 ! and hence should scale as /2. Putting
all these together we find that .5 should scale as y 2 or a = 1/2. This argument
should be limited to small enough values of y since the growth law / ~ /2 is ex-
pected to be limited to small y . The break down of scaling occurs for y between

2.0 and 5.0. We conjecture that the upper limit of ¥ will be given by the frequency

of topology change per cell. Validity of this conjecture is suggested in Fig. 7 where
the shear rate is compared with the average rate of topological change per cell for
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Fig. 6. Scaling behavior of stress-strain relationship.

log,,»

Fig. 7. Logarithmic plot of the average frequency of topology change per cell fi, (circles) and the rate
of shear (straight line).

0 < yt < 10. We see that the value of y where the scaling breaks down roughly
coincides with the value of ¥ where the two rates are equal. We have also monitored
the ratio of the frequencies of 71 and 72 processes and found that the ratio stays
roughly constant at the value of 4 for the values of y where scaling holds and begins
to increase when the scaling starts to break down.
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5. Discussion

Here we have demonstrated how the vertex models of cellular patterns can be
used to study mechanical behavior of cellular structures including dynamical
problem like viscoelasticity. However, there are much more to be desired for
applications to real problems such as foam rheology. In foam rheology, for instance,
the dissipation associated with fluid flow in liquid films into and out of Plateau
borders is probably more important than that associated with transfer of air across
liquid films (Kraynik, 1988). However, the experience gained with our simple
vertex models should be quite useful in tackling more realistic models of cellular
structures.
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Appendix A
After some straightforward algebra, the Lagrange multipliers A, are shown to
satisfy the following equation

—_

@O @ @ ,
Mo =420 281 % By )+ (P + 1 i 2w £/ 2, (A1)
B

i i

where 7 is the unit vector directed upward from the two-dimensional system and
the sums >(® and 35(® are over the vertices belonging to the cell a and over the
cells B adjoining the cell o, respectively. This is explained in Fig. 8. One can directly
verify that the solution of Eq. (A—1) for A, is uniquely determined up to a common
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(a) (b)

Fig. 8. Arrangement of vertices and cells for Eq. (A-1).

constant. Thus, if we impose another condition on A, like > A, = 0, the A’s can be
uniquely determined.

Appendix B

I, in Eq. (3—6) will be defined here. Let us draw a straight line parallel to the
x-axis and count the number of'its intersection with the bonds. Let n, be this number
divided by the total system length L, along the x-axis averaged over many different
straight lines along the x axis. Then /, is defined by n,!. ], is then similarly defined.
We can easily find

1 y _l ¥ _
ne=2 Y25 )] (B-1)

and similarly for n,.



