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Abstract. Computer simulations of two-dimensional cellular pattern growth found
in coarsening soap froths and grain aggregates have been carried out employing the
vertex model. Since the vertex model describes cellular structure and its dynamics
by means of the minimal number of degrees of freedom it enables us to simulate
systems with large number of cells and definitely gives asymptotic behaviors of the
infinite system. It is shown that the vertex model reproduces main characteristics
of cellular pattern growth and that it has considerable flexibility for modification.

1. Introduction

Cellular structures are ubiquitous in nature. They range from microscopic
scale to macroscopic scale, such as grain texture in polycrystals, magnetic domain
structure in magnets, cell texture in biology, soap froths, cellular pattern in Benard
convection, columnar joint of basalt, celluar structure of the universe, and so on.
Our purpose is to find universal laws underlying formation of those patterns
irrespective of space and time.

Grain texture in polycrystals and soap froths have been studied most sys-
tematically among others so far (Atkinson, 1988; Weaire and Rivier, 1984). Pattern
formation in these systems is driven by the thermodynamic force which attempts to
minimize interfacial energy. Their main characteristics are as follows:

(i) Power law growth
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The average radius (or size) of cell R (¢) has the following asymptotic form at
long times ¢

R(t)=Kyt", (1.1)

where K, and v are positive constants.
(i) Scaling

The cellular pattern evolution shows a scaling behavior in the time region of

the power law growth (scaling regime). Namely, statistical properties of the

system are time-invariant if they are rescaled by the length unit of the average
cell size.

The exponent of growth law v is theoretically expected to be 0.5, while the
experimental results scatter from 0.25 to 1.0. The scattering of experimental values
is likely to come from the fact that secondary effects, e.g. due to impurities,
influence the motion of vertices and furthermore that statistical accuracies of
experiments are insufficient. Many runs of experiment under the same condition
will give a definite result with a high accuracy.

The scaling behavior can be seen by means of the distribution of cell sizes and
that of the number of cell edges. The distribution function of cell sizes has the
following form in the scaling regime:

g(R,t)=ﬁg*[%} (12)

where R is a cell size. It was reported that the scaling function g*(x) is the log-normal
distribution function at least in three dimensions, but its verification was not
sufficient in two dimensions (Anderson et al., 1989). In order to determine the
scaling function with a high accuracy, we need to observe cellular patterns at short
time intervals for long times in the large system. The distribution function of the
number of cell edges becomes stationary in the scaling regime:

f(nt)=f"(n), (1.3)

where n is the number of cell edges. Equation (1.3) directly expresses that the
topology of the system is statistically invariant in time in the scaling regime.
Definite forms of f*(n) and g*(x) are still unknown.

Computer simulations have played so far the main role in theoretical studies
of this problem. In order to overcome the difficulty mentioned above, we need a
simple model which still retains the essentials of cellular pattern growth and enables
us to simulate development of large systems of cells for long enough periods of
time. As examples of such models, we have proposed the so-called vertex models
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in two and three dimensions (Nagai et al., 1988; Kawasaki ef al., 1989a, 1989b).
Computer simulation studies of these models have demonstrated that they are
efficient simulation models which reproduce the main characteristics of cellular
pattern growth mentioned in Section 1 (Nakashima et al., 1989). In this paper we
review a two-dimensional vertex model and its simulation results and discuss its
refinement.

2. Vertex Model

Two-dimensional cellular pattern is regarded as an assembly of vertices
connected to one another by straight cell boundaries, which will be called interfaces
hereafter in the vertex model. Development of the system then can be described
through movement of vertices. We find that the effective driving force acting on
vertices comes from the surface tension which attempts to minimize the total
lengths of interfaces and that the effective frictional force acts on each vertex. If the
interfacial energy completely dissipates away through friction the equations of
motion for vertices can be written as (Kawasaki et al., 1989a).

(1) 1 @
ZDy..[vi+5vj)=—ZO'ry, (2.1)
J J

where D;;is the tensorial friction coefficient given by Eq. (2.2) below, v;is the velocity
of the vertex i, o the interfacial energy per unit length, "y the unit vector directed
from j to i and the sums are over three neighboring vertices j directly connected to
the vertex i. The tensorial friction coefficient in Eq. (2.1) is given by

D; = 3—01:—|rij |nl-jnij, (2.2)
where L is the Onsager kinetic coefficient, r;; the relative vector directed fromj to
i and n;; the unit normal vector of the interfacial segment <ij>. The left hand side
in Eq. (2.1) denotes the frictional force acting on the vertex i while the right hand
side denotes the driving force. Since the friction coefficient is a tensor a vertex does
not necessarily move in the direction of the resultant of three driving forces acting
on it.

Furthermore, the two-dimensional vertex model describes topological changes
of two-dimensional cellular pattern by means of the two types of elementary
processes as follows: when an interfacial segment becomes shorter than a small
distance A the recombination of vertices, the so-called T1 process, or the annihi-
lation of a triangular cell, the so-called T2 process, occurs depending on whether
the interfacial segment in question belongs to none of triangular cells or not, as
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shown in Fig. 1.

This vertex model enables us to simulate the large cellular system efficiently
because it substantially reduces the number of degrees of freedom by coarse-
graining the original cellular system. This will be shown in Section 3.

—

(a) A
A
(b) —
A
Fig. 1. Elementary processes. (a) Recombination. (b) Triangular annihilation. A is the small distance.

3. Computer Simulation

We solve Eq. (2.1) numerically under the periodic boundary condition and
choose the Voronoi cell network which contains 48,000 vertices in a rectangular
system as the initial state (Nakashima et a/., 1989). We monitor the lengths of all
the interfacial segments in the system at each step of time. If any segment becomes
shorter than the small distance A it undergoes either of two types of the elementary
processes shown in Fig. 1. We take A = 0.2 as the small distance and 8¢ = 0.01 as
the step size of time which are expressed in the length unit R (0) and the time unit
R (0)%L where R (0)is the initial average size of cell. Tracking the development of
the system from = 0to 7= 100 we have found the following behavior of the system:
after ¢t ~ 2 it shows a random pattern different from the initial Voronoi pattern and
grows in a statistically similar fashion. Figure 2 shows a snapshot of the pattern
obtained in this simulation at # = 2. The average size of cells behaves as Eq. (1.1)
with v=0.5 and the two distribution functions, Egs. (1.2) and (1.3), approach those
shown in Figs. 3 and 4. In these figures the solid lines give our results and the dot-
dashed lines are the Monte Carlo results for the Potts model (Glazier et al., 1989).
Our distribution functions are slightly sharper than those for the Potts model.
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Fig. 2. Snapshot of evolving cellular pattern at ¢ = 2.
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Fig. 3. Distribution of cell sizes in the scaling regime. The solid line shows the simulation result for the
original vertex model and the dot-dashed line shows the Monte Carlo simulation result for the
Potts model.
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Fig. 4. Distribution of the number of cell edges in the scaling regime. The solid line shows the simulation
result for the original vertex model and the dot-dashed line shows the Monte Carlo simulation
result for the Potts model.

4. Modified Vertex Model

The crucial point of the vertex model mentioned in Section 3 is to assume
straight interfaces instead of the original curved ones. We here try to include the
effects of finite curvature of interfaces in the vertex model and examine how the
results mentioned in Section 3 are modified (Kawasaki et al., 1990; Nagai and
Kawasaki, 1990).

The generally accepted picture of cellular pattern growth is based on the
following equation for the normal velocity of interface at a point s:

v(s) = LK(s), (4.1)

where L is the Onsager kinetic coefficient and K(s) the local curvature. The velocity
V() points to the center of the radius of curvature. Each vertex is the terminus of
three such interfaces meeting at equal angles of 2nt/3 radians. From the viewpoint
of the vertex model we are not so much interested in the motion of the three
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interfaces as in the resulting motion of the vertices. Therefore, we here modify Eq.
(2.1) in such a way that the equations of motion for vertices in the vertex model
correctly reproduce the vertex motion in the picture mentioned above. Namely we
write the modified equation as

() 1 ) |
ZDU.(vi+5vj)=—ZGC(9j)t;j. (4.2)
J J

Here we have introduced a correction function C(6,) where ; is the angle between
the two interfaces other than the interfacial segment <ij> emerging from the vertex
iandisillustrated in Fig. 5. In fact finite curvature must influence both the frictional
force and the surface tension, although apparently we only correct the latter in Eq.
(4.2). However, this correction factor must already include the modification of the
frictional force.

Fig. 5. Definition of the angle 6;.

As was already mentioned, the correction function C(6) is determined in such
a way that Eq. (4.2) gives the correct velocity of vertex. Since it is difficult to do so
generally we consider the following symmetric configuration of vertices: an n-
sided regular polygon connected to n outer fixed vertices by symmetrically radi-
ating straight lines. Equation (4.2) then gives rise to the outward component of the
vertex velocity given by

v=BM(n)§, (4.3)

where a is the edge length of n-sided regular polygon and

By(n)= {C(ﬂ—%) - 2C(§+%)5in(%)}005_2 (%) (4.4)



396 Chapter 6

We consider two cases, soap froths and grain aggregates, for the symmetric
configuration. In these cases the movements of interfaces obey Eq. (4.1) and three
curved interfaces meet at equal angles of 27t/3 radians at each vertex. We assume
in the case of soap froths that interfaces are circular arcs and obtain analytically the
velocity of vertex in the symmetric configuration. In the case of grain aggregates,
we numerically track the movements of an interfacial segment and a corresponding
vertex in the symmetric configuration. Then we obtain the velocity of vertex given
by Eq. (4.3) where By(n) is replaced by

Bg(n)= —isin(nx) for soap froths (4.5)

V3

and

Bg(n)=byx + byx* + byx®  for grain aggregates, (4.6)

wherex=1/n—1/6, b, =-7.26, b, =—4.43, b; = 8.44. Here the length a in Eq. (4.3)
is defined as the distance between the two neighboring vertices. The difference
between Bg(n) and Bg(n) is small in the whole range of the edge number 3 <n <o
(-1/6 <x < 1/6).

The correction function C(6) can be determined by the equation By (n) = Bg(n)
for soap froths and the equation By,(n) = Bg(n) for grain aggregates. Here we use
x = 1/n— 1/6 as a continuous variable and numerically solve the above functional
equations for C(0) by expanding them into series with respect to x. The results are
plotted in Fig. 6 as functions of the angle 6 =27 x (1/3 —x) for 0 <6 < m, where the
region of variables is extended from the discrete space of » to the continuous space
of 0. In Fig. 6 the solid curve shows the correction function for soap froths while
the dotted curve shows that for grain aggregates. The modification is remarkable for
small angles, while there is no modification at 6 = 27/3 which corresponds to a
regular hexagon. Thus, we can say that the effect of finite curvature is most
important for triangles corresponding to © = /3 and that it prevents shrinking of
triangular cells.

We expect that the correction functions obtained above are applicable to
general random configurations of cells, although they have been derived for the
symmetric configuration. This is because it can be expected that this symmetric
configuration well describes the average behavior of a cell in the scaling regime. In
fact we found that the rate of change of the area 4, of an n-sided cell, d4,/dt, which
is analytically calculated using Eq. (2.1) for this configuration reproduces well the
corresponding quantity for the average area 4, , d 4, /dz, obtained by the computer
simulation mentioned in Section 3.

We now perform computer simulations by using Eq. (4.2) with the correction
function given in Fig. 6. Here we choose the number n of cell edges instead of the
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Fig. 6. Correction function. The solid curve is for soap froths and the dotted curve is for grain aggregates.
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Fig. 7. Distribution of cell sizes in the scaling regime. The solid line and the dotted line show the
simulation results for the modified vertex model in the cases of soap froths and grain aggregates,
respectively. The dot-dashed line shows the Monte Carlo simulation result for the Potts model.
The double circles are the experimental results for the two-dimensional soap froth.

angle 6 between two interfaces at each vertex where we use the relation 0 = & — 27/
n for an n-sided regular polygon. The simulation method is the same as that
explained in Section 3. The initial number of vertices is 6,000 and 100 runs have
been performed. The system shows the scaling behavior in the almost same region
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oftime asin the previous one. The growth exponentisunchanged,i.e. v=0.5. Figures
7 and 8 show the results for the distribution of cell sizes and that of the number of
cell edges, respectively, in the scaling regime. The solid line and the dotted line give
ourresults for soap froths and for grain aggregates, respectively, in both figures. The
difference in two distributions between the two systems is small. The two distri-
butions have become broad compared with those for the original vertex model
shown in Figs. 3 and 4 and are closer to the Monte Carlo results for the Potts model
shown by the dot-dashed lines (Glazier ef al., 1989). The experimental results are
also plotted in both figures using the circles (Simpson et al., 1967) and the double
circles (Glazier et al., 1989) for two-dimensional soap froths and the squares
(Simpson et al., 1967) for a two-dimensional grain aggregate. We can say that the
agreement between the experimental results and our results for the modified vertex
model is satisfactory as a whole, since the accuracy of the experimental results cited
above seems not to be sufficient. Many experimental runs should be carried out
under the same condition because statistical fluctuations are large due to finiteness
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Fig. 8. Distribution of the number of cell edges in the scaling regime. The solid line and the dotted line
show the simulation results for the modified vertex model in the cases of soap froths and grain
aggregates, respectively. The dot-dashed line shows the Monte Carlo simulation result for the
Potts model. The single circles and the double circles are the experimental results for the two-
dimensional soap froths and the squares are those for the two-dimensional grain aggregates.
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of the system in the cellular pattern growth. Our simulation results given above are
the values that are averaged over 10 time points in the scaling regime in each run
and over 100 runs. We should notice that one can further refine the vertex model by
employing the angle variable instead of the number of cell edges for the correction
function.

5. Conclusion

We have carried out computer simulations of two-dimensional cellular pattern
using the vertex model. The cellular pattern is regarded as an assembly of vertices
connected to one another through straight interfaces in this model. We have shown
that the effects of finite curvature of interfaces can be included in this model. As a
result, we conclude:

(1) Thetwo-dimensional vertex model is efficient to simulate the system containing
the large number of cells. The modified vertex model reproduces the experi-
mental results and the other simulation results.

(2) Effectsof finite curvature of interfaces are remarkable especially for triangular
cells. This means that it is important to treat the motion of triangular cells
properly.

(3) The effects of finite curvature of interfaces are absent for the growth law.

(4) Finite curvature of interfaces tends to broaden the distribution of cell sizes and
that of the number of cell edges.

The two-dimensional vertex model has been extended to the three-dimension
and the computer simulation for the latter is in progress (Kawasaki et al., 1989b;
Nagai et al., 1990).
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