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1. Introduction

Gels are the deformable solids which consist of three-dimensional networks
and the solvents saturating these networks. The networks are made, for example, of
cross-linked polymers. Some of the gels exhibit the phase transition (so called the
volume-phase transition) upon which the volume fraction of the monomers of the
network (the network fraction, for short) changes discontinuously (1). The transition
is due to the competition between the interaction energies among the molecules of
the gel and the configurational entropy of the network and the solvent.

For the gel samples immersed in a pure solvent with no mechanical constraints
the equilibrium network fraction is given as the function of the temperature (Fig. 1).
On this curve, the condition for the osmotic equilibrium is satisfied between the
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Fig. 1. A typical equation of state is shown schematically in the plane of the temperature and the inverse
of the network fraction, or the envelope volume occupied by the gel sample.
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solvent in the gel and the pure solvent surrounding the gel. If we attach the boundary
of the gel sample (or, more precisely, the monomers on the surface part of the
network of the gel) to the inner wall of a rigid container, then there can occur the
spatial phase separation for a certain range of temperature. While phase separation
seems like that observed in binary fluid mixtures, the situation is not so simple in
the case of gels: Since the order parameter of the volume-phase transition is related
to the elastic strain of the system, we always have to take into account the effect of
the shear strain induced either by imposition of the boundary condition or by the
occurrence of the phase separation (2). This point can be understood by the example
shown in Fig. 2: Unlike in the case of binary fluid mixtures we cannot realize within
a single gel sample the spatial phase coexistence between the isotropic swollen
phase domain and the isotropic shrunken phase domain without introducing the cuts
or the reconnections into the network. (Also for the phase separation in the binary
alloys, itis known that the internal strain caused by the phase separation sometimes
has important effects even if the strain itself is very small (3)).

i

!
a;

HOMOGENEOUSLY; ~HOMOGENEOUSLY
SHRUNKEN PHASE! SWOLLEN PHASE

Fig. 2. Illustration of the fact that, if the topological defects in the networks are not allowed, the strong
shear deformation must occur in the region between of the domains with different degrees of
swelling.

Below, we describe the framework of the elasticity theory for the small
distortion from the uniformly and finitely strained states of gels (Section 2 (2)). We
then show in Section 3 the results of the simulation of the large distortion in a two-
dimensional model gel (4).

2. Linear Stability

First we describe the linear stability of the uniformly strained gel whose
boundary is attached to the inner walls of a rigid container. We define the reference
state of a gel as the strain-free state at a certain temperature. Then imagine that we
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stretch or squeeze the sample uniformly by the factors a, o, and o in the direc-
tions, respectively, along x, y and z axes (Fig. 3). After that, we attach the sample
to the walls of the containter without changing the shape of the sample. The free
energy of the gel in this uniaxially deformed state is the function of o, and oyjas well
as the temperature and the chemical composition of the solvent. In the continuum
description, we denote by  (x, y, z) the small displacement of the network. Using
the general theory of elasticity (5) the excess free energy F due to the displacement
can be expressed up to the second order of 7 as follows:
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Fig. 3. The gel in the reference state (the unit cube shown by the dashed lines) is deformed uniaxially
by the ratio o along the zaxis and by theratio o the transverse directions. At this state the surfaces
of the gel are attached to the inner walls of the rigid container. (Such a uniformly deformed state
sometimes may be attained either by mechanical straining or by changing the temperature of the
gel under an appropriate mechanical constraints.)
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The integral is done over the whole volume of the gel sample. The elastic constants
K, p, etc. are the functions of the temperature, o, and o. Especially K and p are,
respectively, the bulk modulus and the shear modulus which also appear in the
elasticity theory of isotropic media. Among the other moduli, L, M and N, are the
moduli peculiar to the elastic media with uniaxial anisotropy. The last terms
including the moduli S and S~ are the terms which does not appear in the usual
elasticity theory. These terms appear due to the fact that we have imposed the global
strain on the system before we attach it to the containter wall. Even in the case of
a, = oy the term S |rot 3 |* remains.

These terms including S and S’ have the feature that, upon the rotation of the
coordinate system which yields the apparent displacement 3 (7)= g x 7 (here g
is the vector defining the rotation), these terms have contributions of the order of
| 2. Such contributions seems to be in contradiction with the natural requirement
of the rotational invariance of the free energy to that order. The key to solve this
paradox is in the constant term on the right hand side of the above expression of F.
Forexample in the case of isotropically strained gel (o, = ayy), this term is the volume
integral of the quantity 4S divy;, the integral which in fact vanishes due to the
boundary conditions on the wall of the container. The presence of O(;; ) terms is due
to the fact that the system under mechanical constraint is not in the true equilibrium.

Upon the rotation of the coordinate system by g these terms of O(j;) yields the

contribution of the order of| g |2, which can be shown to exactly cancel point by point

the above mentioned ~ | g |2 contributions from the O(3;?) terms. Thus the rotational
symmetry is recovered locally upon addition of the last O(;) terms, and this fact
tells us that it is necessary to distinguish the expansion in powers of the displace-
ments from the expansion in powers of the small angle rotation.

The O(3;?) terms of F determines the linear stability of the mechanically
constrained gel, and to analyze this we decompose these terms using the normal
modes of deformations. Neglecting tentatively the effects of the boundaries, we
assume the following form of deformation:

u(x,y,z) = ugexp(ikx +igz)

Then the condition of the instability is defined as that, in the following eigenvalue
problem
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one of the eigenvalue vanishes for a certain value of k/q. Here the coefficients R/,
etc. depends on the temperature, o, and o through the combinations of the elastic
moduli described above. (Here we disregarded the purely transversal modes, j;, ||
y-axis, which are stable.) The instability conditions are further reduced to that the
instability occurs if in the parameter space (J;, J5, J3) defined as

5= BB
J, = RJ-;R;;

Jy=(RLRE + RLRL - R) /2
either one of the inequalities J; > 0, J, > 0 and J; > —(J,.J,) /2 is violated. There are
three types of the modes of the instability, according to which of these inequalities
is violated, as shown in Fig. 4. These modes have, respectively, Ising, XY and
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Jy = —(J1J2)1/2 s kg # 0

Fig. 4. Thethree modes of the mechanical instabilities in the infinite bulk of gel. The arrows in the figures
schematically show the directions of the displacement field i, and the solid lines show the in-
stantaneous nodal planes of the displacement. All the directions within the xy-plane are equivalent.
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“oblique” symmetry. The unstable fluctuations belonging to these modes will
contribute to the anisotropic light scattering near the spinodal. We do not know,
however, whether the oblique type of instability (kg # 0) can be realized in nature.
For the model free-energy proposed by Flory (1), which is often used in analyzing
the experiments and in theoretical calculations (1, 6), we can prove the inequality
(J1 +J)/2 2 J5 2 (J,J5)12, and therefore, the oblique type instability is not accessible
by that model. The nonlinear or large amplitude fluctuation cannot be predicted
from the above linear analyses alone.

Thus far we have ignored the effect of the boundaries of the container. This is
justified by the following argument: In the present framework of elasticity theory,
which does not include in F the higher derivatives of j; than the first order, there are
no characteristic length scale other than the dimensions of the integration volume.
As the result, the eigenvalues A (see above) in the case of infinitely large gels are

the second order homogeneous function of . The destabilization, A( ) =0, in the
infinite bulk gel therefore occurs at a special direction of § with arbitrary mag-

nitude, | |. On the other hand when the sample is bounded by the fixed boundaries

separated at a distance, say L (<o) from each other, the eigenmodes are constructed
from plane waves so as to satisfy the boundary conditions. And, among these
modes, those with the wavelength larger than ~L are relatively stabilized by the
presence of the rigid boundaries (2). Thus the instability in the finite system with
fixed boundaries first occurs at those modes with infinitely short wavelengths and
hence the condition of destabilization is not affected by the system boundaries.
The above argument must be modified when there are the stress-free bound-
aries. In the presence of the stress-free boundaries there appears the branch(es) of
the “surface sound modes” which are localized near these boundaries. The short
wavelength modes of this branch become unstable before all the other bulk modes.
It is the undulation and partial folding of the stress-free surfaces, not the spinodal
decomposition within the bulk, that are lead by the instability of the surface sound
modes; even when the partial folding of the surface appears, the bulk modes can still
be stable. This can be also seen in the numerical simulation (see the next section).

3. Model Simulation of Large Deformations

The model we have used in the simulation is as follows: By connecting the
Hookean springs with the identical natural length /, we construct the two dimen-
sional triangular network. The natural length /; is the important parameter of the
system. The bottom array of the nodes joining the springs are fixed on the straight
line with the separation between the neighboring nodes on this line being fixed to
be unity. We impose the periodic boundary condition in the horizontal direction
parallel to the bottom line. As for the topmost array of the nodes, we have considered
(1) the case of the fixed boundary on which the nodes are fixed in the way similar
to those nodes on the bottom line, (Fig. 5), and (2) the case of free nodes, simulating
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Fig. 5(a). The relaxation of the system with the fixed top and bottom boundaries. The unit of time t is
of the order of the relaxation time of individual springs. The initial evolution is governed by the
linear instability. The mesh size on the boundaries is taken to be unity.
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Fig. 5(b). The similar calculation to 5(a) with the wider gap between the fixed boundaries.

the stress-free surface (Fig. 6). Besides the Hookean springs we added the three
body potentials for each angle between the adjacent springs joined to a node so that
they exert strong repulsive forces when the angles become less than = 0.01 rad. We
let the system relax from the initial configuration to the final one which corresponds
to the (local) minimum of the total energy, using the relaxational molecular
dynamics method, in which every node is displaced at each timestep in a way that
the displacement of the node is proportional to the sum of the forces acting on the
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Fig. 6(a). The relaxation of the system with the stress-free boundary on the top. The natural length of
each spring is [y = 1.45.
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Fig. 6(b). The similar calculation to 6(a) with the natural length chosen as /, = 1.60.

node. The computation was carried out at the Institute of Plasma Physics of Nagoya
University as the part of a joint research program of the Institute.

In Fig. 5 we have fixed both the top and the bottom boundaries and /, was set
as [y = 2.5. In the case of the narrow gap between these boundaries (Fig. 5(a)) the
short wavelength fluctuations in the initial linear stage evolve into the large
distortion with some structures. The locally ordered structure in the mid part of the
gap seems to be the artifact of the descretization employed in the present model. On
the other hand in the case of the wider gap between the fixed boundaries (Fig. 5(b))
there appear the bands consisting of the strongly sheared triangular elements, and
each of these bands connects the two horizontal boundaries. Between these strongly
sheared bands, there are the domains of the swollen and fairy isotropic triangular
elements. Unlike the domain wall of ferromagnets, these strongly sheared bands we
observed are not the topological defects and thus have no homotopical character-
izations. The new theoretical framework would be needed which could characterize
(apparently) non-topological defects such as these sheared bands and the cusps on
the stress-free surface which we describe below.

Figure 6 shows the cases with the stress-free top surface. The natural lengths
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were chosen to be [, = 1.45 (Fig. 6(a)) and [, = 1.60 (Fig. 6(b)). In both cases, the
initial condition is the nearly perfect regular triangular networks with the weak
periodic modulation along the horizontal direction. The amplitude of the initial
modulation was chosen to be an increasing function of the distance from the bottom
surface. In the former case the cusps are formed in the long time while the bulk
remains stable under the influence of the deformed surface. (We have also studied
the case with /; = 1.35 which is not shown. In that case, the system converges to the
uniaxially stretched uniform state.) For the larger values of /, (Fig. 6(b)) the cusps
develops deeper into the bulk and the partial folding of the surface occurs. There is
an analysis of the partial folding (6). Other simulation with the stress-free surfaces
were also done starting from the regular triangular network with the minimal
displacements due to cutoff errors. When the natural lengths were chosen to be the
same as those in the above figures, an aperiodic array of the cusps have appeared,
where the typical separation distances among them are the order of the distance
between the top and the bottom surfaces. Such observation is in accordance with the
experiments by the MIT group (1). When we choose much larger natural length, /;
= 2.50, the instability occurred also within the bulk as well as at the stress-free
surface, and complicated patterns of deformations appeared (7).

4. Conclusion

We have reviewed our study on the mechanical aspects of gels using the linear
stability analysis and the model simulation of the nonlinear elastic deformations.
The other aspects of the gel physics from the view points of the hydrodynamics, the
statistical mechanics of polymer networks, the chemistry of solutions, the statistical
mechanics of random systems, etc. also await further developments.
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