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Particle Number and Sizes Estimated from Sections
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Abstract. The stereological methods for counting and sizing of particle hidden in
an opaque specimen are reviewed. The methods may be separated into two types
according to the measurement principle: 1) the methods of indirect estimation on
independent sections based on the assumption that the particles have the same
known and simple shape, and 2) the methods of direct estimation on physical or
optical section pairs without any assumptions concerning particle shape; the
advantages and disadvantages of which are discussed together with the historical
background.

1. Introduction

Historically, stereology began with the French naturalist George Buffon and
his publication (1777) of the now famous “Buffon needle problem” first solved by
him in 1733. Stereology a word, however, coinced at the founding meeting of the
International Society for Stereology (ISS) in 1961, has had its greatest impact and
development in astronomy, geology, metallurgy, and microscopy, where analyses
of three-dimensional structures are made by reference to two-dimensional polished
surfaces or thin sections or projections. Stereology is defined at this meeting as:
“stereology deals with a body of methods for the exploration of three-dimensional
space, when only two-dimensional sections through solid bodies or projections on
a surface are available (Underwood, 1970).” Contributions from statistics, statis-
tical geometry, and topology have all played arole in the development of stereology.

A common problem in stereologist is that of estimating the size distribution of
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particles embedded in a three-dimensional specimen. The pioneering efforts by
Wicksell (1925), and the following years, initiated the search for indirect methods
of estimating particle numbers and the number distribution of particle size. In order
to obtain these distributions, however, an a priori modeling of particle shape is
always necessary. Departing from relatively simple geometrical shapes leads to
mathematically intractable models, or even to indeterminate ones, so that, in many
cases, the stereologist is felt with the unpleasant choice between an unrealistic
particle model, a mathematically complex one, or no solution at all. However, on
sections (or lines or points) a particle will appear with a chance proportional to its
size because large particles have a greater chance of being hit by the prove than
small ones. The introduction of three-dimensional probe with the publication of the
disector method (Sterio, 1984) makes to change things really and then of a chain of
increasingly powerful methods for unbiased sampling and sizing of arbitrary
particles. Arbitrary shape particles of any size and shape, which may be point-like,
are therefore sampled with a uniform chance only with a three-dimensional probe.

In this paper we will review the methods estimating particle number and sizes
obtained from the measurements on the sections and provide detailed discussion
together with some evaluation of the methods. Some of them are standardized or
well-known stereological methods using a two-dimensional prove. Then, we show
that the number and sizes of arbitrary particles can indeed be estimated using a
three-dimensional probe. This paper considers references have been chosen for
purposes of illustration.

2. Fundamental Formulae

For random plane section of 3-dimensional specimens, the well-known
fundamental formulae of stereology are

Vy=A4,=1L,=Fp (1-a)
L, =2P, (1-¢)

Ky =C, (1-4d)

The principal symbols are used and give the combined notation in common usage
in stereology. The term Sy, for example, refers to surface area/unit test volume and
represents a fraction S/V;. The numerator is the microstructual feature and the
demoninator is the test quantity. Note that the equations relate the volume-based
terms (volume density Vy; surface area density, Sy; length density Ly; curvature
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density K) in the space and the area-based terms (area density, 4 4; length density,
L; point density P4; curvature density, C4) on the section to the counting mea-
surements (Pp, Py, P4). See, for example, Weibel and Elias (1967), DeHoff and
Rhines (1968), Underwood (1970), and Miles and Davy (1976).

3. Indirect Methods for Simple Convex Particles

Consider a system of convex particles distributed randomly in a space. From
the numerical density N, of particle profiles determined experimentally by counting
on a section, the particle numerical density Ny is

Ny=N,/D (2)

where D is the mean tangent (caliper) diameter obtained by averaging over all
orientations. This principle is usually ascribed to DeHoff and Rhines (1961), but it
hadalready been given by Abercrombie (1946). We have to determine D analytically
for the particles with simple shapes. By an observation of particle projection (for
example, electron micrograph of thick section), for a polidispersed system of
spheres, it is clear that the mean tangent diameter D is measured from the mean of
the projected heights of the system of randomly oriented particles.

Another principle allowing an estimate of particle numerical density, which is
described by Weibel and Gomez (1962), is used a different mathematical approach.
Using Vy the areal fraction occupied by the profiles in a section, the numerical
density of particles is given by the formula

. ()

The factor K(>1) is a dimensionless coefficient which depends on particle size
distribution. The coefficient S depends on the shape of particles.

Mean quantities of particles are frequently of interest. They include the mean
volume of particles, ¥ (=V}/N,); the mean surface area, S (=S;/N}); the mean length,
L (=L,/Ny) and the mean curvature K (=K/N,,). Unfortunately, these particle mean
quantities are not determinate since estimations of Ny are partly influenced by particle
size and shape (DeHoff and Rhines, 1961; Weibel, 1963; Loud, 1968). It, however,
is often possible to base N, estimates on an assumption of geometrically defined
particle (e.g., sphere, cube, rod, disc), but if the real particles depart significantly
from the ideal, then steps must be taken to compensate for the resulting estimation
bias. In practice, one established approach involves attempting to define particle
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shape more precisely by observation with histological insights and measurement of
particle profiles appearing on thin section (e.g. Weibel ez al., 1968). This approach
is not universally successful.

A relationship for obtaining the size distribution of spherical particles (sphere
and spheroid) of same shape (DeHoff, 1962; Miyamoto, 1984) is

Ny (/)= A3 PPN (i)g (4)

where N{j) represents the numerical density in the j-th class interval; j is an integer
with any value from 1 to m. The largest particle size corresponds to a value of j =
m. The N,(i) are the numerical density of section profiles, grouped from i=1 to m
according to size groups increment A established by 4., (the largest profile size)/
m. The coefficients p/'is the ji-th element of the inverse of a matrix whose ij-th element
is size correctors p;;. The correctors are given by Cruz-Orive (1978). The coefficient
q isthe specific shape factor which is the function of spheroidal axil ratio. In the case
of particles being sphere, g = 1. Many literatures were produced over the last six
decades on such a model (e.g., Underwood, 1970; Weibel, 1980).

Particles exhibiting variation about shape as well as size require plural number
of variables for describing the size and shape distributions. For example, a
description of a variable triaxial ellipsoid requires three variables, whereas the
distribution will be a three-dimentional function in terms of three variables. It seems
intuitively clear that a n-dimensional particle distribution can be identified from the
corresponding profile distribution only if the latter has a dimension greater than, or
equal to n. The problem of identifying a three-variate distribution describing
variable triaxial ellipsoids from plane sections would be indeterminate, because all
the resulting profiles are ellipses, which can be fully described by a bivariate
distribution only. On the other hand, the problem of identifying a bivariate
distribution describing size and shape variable spheroid from the corresponding
bivariate profile distribution is determinate if the spheroids are prolate or oblate
type. In this case, the coefficients are separable into size coefficients p* and shape
coefficients g¥. The formula (Cruz-Orive, 1978; Miyamoto, 1987) is

Ny(ij) =& 33 o N, (ko D)g’ (5)

where size coefficients p’ are same as p/ of Eq. (4) and shape coefficients g% depend
on for prolate or oblate spheroid case. The main drawback of this approach is that
it might require very large profile samples (Weibel, 1980). The fundamental
principle of this approach, however, is ascribed to Wicksell (1926).

Estimation of particle number, particle size, or particle shape distribution in a
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volume causes many problems. A plane section probe of an aggregate of particles
will “hit” each object with a probability proportional to the object size. We have to
recognize that the plane section measurement brings us a biased sample data.

4. Direct Counting Methods for Arbitrary Particles

The disector “which was described by Sterio (1984)” is a 3-dimensional
counting rule and its integral test system for obtaining unbiased estimates of the
number of particles in a specimen. The system has a 2-dimensional sampling frame
and parallel section plane at a distance 4, which is smaller than the minimum particle
height. Particles are counted if their sampled profiles are not present in the look-up
section (Fig. 1). The probability that a particle is hit by a section but is not hit by the
parallel section is the same for both large and small particles. This probability is
known and can be used to make a direct estimator of the total number of particles
in a given space,

N= _j— V(ref) (6)

Fig. 1. Thedisector is a two parallel section planes of a known distance / apart with an unbiased counting
frame of area a (fra) on the sampling or reference plane. Complete transects (one or more profiles
in the same particle) are sampled if they are partly or totally inside the frame provided they do not
in any way intersect the fully drawn exclusion edges or their extension. There are Q = 4 such
transects sampled in the figure. Of these four, two are intersected by the upper look-up plane and
are not counted. The number of particles in the probe is remaining O~ =2 (cite from Sterio (1984)).
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in the look-up section and F(ref) is the total volume of the specimen or reference
space. a (fra) is the area of an unbiased, 2-dimensional frame (Gundersen, 1977)
used for the sampling of particles to be counted, and the summation is carried out
over j randomly positioned disectors in the reference frame.

It should be pointed out that the disector principle is not influenced by bias
related to lost-caps and overprojection due to section thickness. Over- and under-
counting on the frame edge is eliminated by the unbiased rule for the first time in
direct stereological counting of particles, but shrinkage due to fixation and embedding
and of section compression, etc. is still the source of potential bias.

As noted by Bendtsen and Nyengaard (1989), however, the simple counting
principle based on section pairs can be regarded as re-discoveries of ideas already
described several times since 1895 (Miller and Carlton, 1895; Boycott, 1911;
Kittelson, 1917; Thompson, 1932; Rhines, 1967). '

The bricking rule (Howard et al., 1985) is basically a 3-dimensional extension
of the 2-dimensional unbiased counting frame mentioned above. It can accomplish
on the tandem scanning reflected light microscope (TSRLM) and permits the
observation of thin optical sections in unprepared biological tissue. The concept is
as follows. Consider an infinite 3-dimensional space which contains particles of
arbitrary shape. Divide the entire space into rectangular parallelepiped or “brickes”
of equal size and shape. Choose a particular brick which any surface of it is either
“forbidden” or “not forbidden”. A particle is counted if it intersects the brick, but
does not intersect any forbidden surface. Note that the particle will be counted if it
lies wholly inside the brick. The basic property of this counting rule is that each
particle is counted by exactly one brick. The bricking rule is non destructive method
conceived for 3-dimensional confocal-scanning light microscopy. It, however,
requires complete 3-dimensional information about the particle should be counted
or not.

The preceding two methods require the measurement of the reference space
(for instance, to count with independent disectors, section thickness must be
accurately measured). This is a clear disadvantage, because section thickness is not
always easy to measure. The following method, however, does not suffer from that
limitation, being therefore intensive to shrinking and swelling of the reference
space.

The factionator (Gundersen, 1986) is an unbiased method for estimating the
total number of particles of arbitrary shape in a bounded solid. The estimation
method is direct, in the sense that it only requires counting particle in a few blocks
but not measuring the corresponding reference space. The object containing N
particles is cut exhaustively into a large number of sections as before. If, on all
sections, one count the number O of particles seen in one section and not in the
previous section, all particles are counted once and N =>Q~. One may count in a
known and fixed fraction 1/f] of all sections, sampled at random together with their
neighboring, look-up sections. Since the sampled sections constitute 1/f; of the whole
nucleus, the number of particles counted in these sections is N/f; and N = f->0".
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Finally, since the counting of particles in each section is performed on a large
number of microscopic fields, one may select at random a known and fixed fraction
1/f, of all fields on sampled sections and only in these fields count the number O~
of particles which are not seen in the corresponding fields of vision in the look-up
section. The final estimator becomes:

N=ffr- 20 (7)

It is not necessary to know the magnification, the area of the sampling frame, the
section thickness, the volume of the reference space, etc.

5. Direct Sizing Methods for Arbitrary Particles

Point-sampled intercepts (Gundersen and Jensen, 1985) enable the unbiased
estimation of volume-weighted mean volume of arbitrarily shaped particle using
independent sections. The estimator is given by

—_— ﬂ Y
Vy = ?lg (8)

where vy is the mean particle volume form the volume weighted distribution of

individual particle size. J; is the (length)? of a random intercept through a test point

which hits a particle, i.e., whenever one of the points of the integral test system hits
a profile, the (length)? of the linear intercept through the point is measured in a
predetermined direction. Through arbitrary particles more than one intercept may

be generated within one transect, in which case 13 is a known linear function of

these intercepts (Cruz-Orive, 1987).

The selector is the techniques by which particle size and number may be
estimated if just the magnification is known. Itis based on a combination of number-
weighted particle sampling (with a disector of unknown thickness) and unbiased
volume estimation of sample particles (point-sampled intercepts) and was first
described by Cruz-Orive (1987). Inastack of section higher than the highest particle
but otherwise of known and possibly varying section thickness, the first two
sections are used as a disector for sampling » particles. Then the particles were
sampled uniformly in a disector. These particles are followed through all the next
sections, projected onto a systematic set of points, and complete intercepts are
measured through every point hitting a sampled particle. All n sampled particles
must be hit with a test-point at least once; if more than one intercept is measured in

a particle one calculates the simple mean of the cubed lentghs for that particle, E
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Sincev;=(n/3) E isanunbiased estimate of the volume of the i-th particle, it follows
that

vy =(x/3m) 38, 9)

i=1

is an unbiased estimate of the mean volume of the particles from the number
distribution of particle volume. It eliminates the need for knowing the disector-
height A.

The nucleator, which is nick-named and considered by Gundersen (1988a),
allows unbiased estimates of absolute structural quantities in arbitrarily shaped
particles to be made from observations sampled in arbitrary points on independently
isotropic probes. In any n-dimensional space, from an arbitrary and fixed point
measure, the distance / to the boundary in any isotropic direction, it is followed that

content =c - 1"

where for n =1, 2, 3,... “content” is length, area, volume,... and ¢ = 2, 7, 470/3,...
(Gundersen et al., 1988b). For a 3-dimensional object, the relationship

W=t (10)

provides an unbiased estimate of the ordinary mean particle volume in the number
distribution without any further assumptions regarding, e.g., the shape of the
particle. This means that the volume of the object can be estimated on just one
section through the fixed point. The section must be either isotropic or fulfill the
requirements for a “vertical” section to enable us to measure in isotropic directions
in 3-dimensional space. Note that in practice the point must be unique recognizable
for it to maintain in a fixed position independent of the direction of the Section.
These conditions can all be met in mononucleated cells and, even more efficiently,
in cells with just one nucleus.

6. Discussion

From the foundation of ISS in 1961 until recently, the stereologists were
repeatedly startled at predecessor sagacities and pioneering efforts at least three
times. The method for estimating the numerical density of particles from the profile
numerical density in the section and mean particle diameter using Eq. (2) isregarded
as re-discoveries of ideas ascribed to the study on cell nuclear population by
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Abercrombie (1946). Until the seventies, the unfolding methods for spheres and
spheroids (Eq. (4) and Eq. (5)) were considered as one of the most important and
inherent subject of the society, but the original unfolding theory had already been
described by Wicksell (1925, 1926). He took the question up from an anatomist
Hellman as a “copuscle problem.” A principle for counting particles by means of
randomly selected section pairs was described by Sterio (1984), but the same idea
had already been discovered by Miller and Carlton (1895) on counting glomeruli
in section pairs.

All the mentioned predecessors dealt mainly with biological specimens and
published the outcomes to a journal of biological or medical realm. Thereafter,
these ideas were not followed by neither the later biological scientists nor the
stereologist. On the other hand, the method for unfolding particle distribution had
begun to be considered among metallurgists (e.g., Scheile, 1935) independent of
Wicksell’s paper. The unfolding method succeeded study by the later metallurgists
and became a prevalent subject of metallurgist and biologist in ISS. These
circumstances may partly explain why the priority of particle counting and
unfolding method went unnoticed, and the general appreciation of particle counting
principle based on section pairs took so long to become accepted among ISS
stereologists. In addition, the stereologists from the beginning were probably, quite
particular about the terms “two-dimensional section ... or projections ...” as in the
definition of stereology, then restrained to their studies. Besides, it is hard to tell if
the authors put great emphasis on methodology and description.

The application of the principle, however that may be, has been accelerating
after the recognition of the method validity especially Sterio’s paper.
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