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Many naturally occurring objects are random fractals, that is, scale-
invariant random structures. In recent years a series of simple models
have been developed which show how fractal structure can occur when rapid
(non-equilibrium) growth is involved. The simplest of these models, which
is called diffusion-limited aggregation, also seems to describe certain
types of orderly growth, e.g., those involved in the formation of snow-
flakes. The relation between these two types of pattern will be discussed.

INTRODUCTION

The coexistence of order with disorder, chaos with patterns,
simplicity with complexity, pervades nature. In this report I will try to
give a theoretical physicist's view of how some of these ubiquitious
features of the world arise, and, in particular, review some recent work
on the generation of both patterns and disorder in simple physical systems.
Some of the elementary features of the model systems we study may turn out
to be generic for the production of form; we can hope that some
contribution to the emerging science of form will result.

Our focus will be on random—growth processes. It turns out that the
most interesting cases correspond to growth far from equilibrium. We will
try to discover when there is order, and when disorder, and how complexity
arises. For the disordered case, we will find that there sometimes occurs
a new and unsuspected symmetry called fractal symmetry (Mandelbrot: 1982).
And we will say a bit about transitions between the various growth
regimes.

GROWTH PROCESSES AND REGIMES OF GROWTH

The simplest type of growth process which we can imagine involves the
production of a large cluster (an aggregate) by the irreversible addition
of subunits from outside. In what follows we will suppose that the units
are tiny spheres (particles) which stick together by short-range forces.
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PATTERNS AND DISORDER

One such model was introduced in the context of cell colony growth
(Eden: 1961)., In this process particles are added one at a time, at
random, to any unoccupied surface site of the cluster. The resulting
aggregate is a featureless blob, as one might expect. The remarkable
thing is that the next two processes which we will discuss which do not
seem very different give an entirely different result, and may thus give
some clues about the genesis of order and pattern in nature.

A very interesting model called ballistic aggregation is intended to
represent processes that contribute to the growth of thin films from a
low-density vapor (Leamy, et al.: 1980). In this case particles rain in a
parallel stream onto a surface where they stick to the surface or to each
other. If the rain is perpendicular to the surface, we get an amorphous
deposit, but for large angles of incidence a persistent pattern of
parallel streaks (called the columnar microstructure) appears which
greatly influence the properties of the film. A theory for this
phenomenon has been given by Ramanlal and Sander (1985).

If the particles "wander™, i.e., randomly diffuse, to the surface (or
to a nucleation center) where they stick to each other on contact we have
a process which has become known as diffusion-limited aggregation (DLA).
This process describes diffusion-limited crystal growth such in the
electrodeposition of a metal (Brady and Ball: 1984); Matsushita, et al.:
1984), 1In Figure 1 we compare a computer simulation of the DLA model
(left) with an electrodeposit of zinc produced in my laboratory by D.
Grier (middle. See Grier, et al. (1985),

FIG. 1.

There are several remarkable aspects of these patterns. One is their
open sprawling structure. They are not merely amorphous, but fractal (see
below). Also, the metal does not have the overall structure of a typical
non-equilibrium dendritic crystal, of which snowflakes are a well-known,
beautiful example. On the right side of the figure we show a dendrite
which was produced in the same cell as the other deposit by slightly
raising the voltage. We believe that this change enhances the effect of
crystalline anisotropy. An qualitative change in morphology results. The
lesson to be learned from this example (which we will discuss further,
below) is that diffusion—limited growth plus weak external anisotropy can
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yield an astonishing variety of complex patterns.

This example falls into a general framework of discussion of
non-equilibrium growth. Very often we find three regimes: near-
equilibrium; disorderly, which may be merely amorphous, but which can
also be fractal; and patterned, with complex shapes reflecting some
underlying symmetry.

FRACTAL SUMMARY

Fractals have received a large amount of attention in recent years
because it seems that many natural objects are of this type (Mandelbrot:
1982). They are relevant to our subject because DLA and many similar
processes produces fractal clusters; this may account for some of the
observations, as we will see below.

Briefly, we may define a fractal
as an object with an anomalous

Hat A b e kind of scaling symmetry.
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called the mass dimension):

N = crD . (1)

For the Vicsek snowflake D=1n(5)/1n(3)=1.46. The fractal dimension need
not be integer. It is a very useful characterization of the overall
scaling symmetry of an object. DLA in two dimensions of space has D=1.71;
for three dimensions D is 2.4.

DIFFUSION-LIMITED PROCESSES IN NATURE

In this section we will describe how complex patterns and fractals
are generated in diffusion-limited growth, and give some physical examples
to demonstrate how a common mechanism can operate in a wide range of systems.

The essential feature of these systems seems to be that growth
instabilities underlie the formation of complexity. This is the mechanism
for amplifying either initially asymmetric form or external noise in order
to generate complex shapes. Eor the case of diffusion this instability
(known as the Mullins-Sekerka instability, Mullins and Sekerka (1963))
amounts to pointing out that a wandering particle is more likely to
encounter a protruding tip of the aggregate and to stick there than it is
to explore the rest of the surface. Thus, tips grow even larger as the
particles accrete. 1t is remarkable that the same effect operates in
other, very different systems in a way that may be shown to be
mathematically identical.

For example, when an inviscid fluid is pumped into a viscous fluid
(the viscous fingering problem, see Paterson (1984)) it is easier for the
viscous fluid to flow away from protruding tips than from flat surfaces.
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Thus tips grow and a complex interfacial pattern results which looks like
the patterns pictured above.

Latent heat flow away from a solidifying crystal also has the
property of being more efficiently dissipated by tips. The tips grow
sharper until controlled by surface tension. Thus there is a direct link
between DLA and this kind of solidification (Witten and Sander: 1981).

Even more remarkable is the fact that electrostatic systems have the
same sort of property. The tip of a grounded conductor in an electric
field is more accessible to field lines than a hole or a flat surface.
Thus field lines concentrate at tips; this is how a lightning rod works.
If the growth of a portion of surface is proportional to the field there,
then an open branched structure will result. Lightning is the most
familiar example. Dielectric breakdowns in solids have been analyzed in
this fashion; they seem to have the fractal dimension of DLA (Niemeyer, et
al.: 1984). In fact, if the rate-limiting step in electrochemical
deposition is not diffusion but inhomogenities in the conduction current
flow, this is the important instability. The patterns of Figure 1
probably result from this effect and not from diffusion (Grier, et
al.: 1985).

DISORDER AND PATTERN

Growth instabilities have another surprising effect in the case of
diffusion-limited growth. They allow a macroscopic expression of
microscopic symmetries. For example, in the case of snowflakes tiny
anisotropies in surface energy and small differences in the sticking rate
of incoming molecules on different crystal faces are amplified in a
complex way. These effects are among the most difficult problems in
mathematical physics, but it does seem clear that the sensitivity of
unstable growth to small perturbations is essential to the form of such
dendrites.

Very recently, some work has been undertaken to see exactly what
conditions lead to patterned growth and what to disorderly, fractal
patterns. The remarkable result is that there can be a sharp
morphological transition in the growth depending on the exact parameters
of the system. Qualitatively, as a fractal pattern grows, tips form,
split, and reform. The proliferation of splittings and tip-interactions
give rise to the fractal. Slightly more anisotropy can stabilize the tip
growth direction. Then the dendrite has its major growth in a single
direction, though it can shed side-branches as it develops (cf. Figure 1).

A very beautiful demonstration of this effect was given by Ben-Jacob,
et.al. (1985) in a modified version of the viscous fingering experiment
described above. Glycerine was confined between plates and air was
introduced in the center. The interface was a disorderly structure of
branches showing tip-splitting, as before. But one of the plates in this
version of the apparatus was inscribed with a lattice of shallow grooves.
As the pressure increased, the effect of the anisotropy increased and
tip-splitting was supressed. A pattern looking very like a snowflake was
produced, see Figure 3.

The recent experiment of Grier, et al. (1985) was an attempt to
explore the same sort of transition. Once more, as a function of voltage
and electrolyte concentration we were able to tune from disordered to
ordered patterns (cf. Figure 1).

SUMMARY

This paper reports a quick look at a tiny subset of the processes
that produce the complex forms that we see in the world around us.
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FIG. 3

Perhaps the isolation, in these simple cases, of a few organizing
principles will inspire a more comprehensive treatment.
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Q: In growing crystals, global symmetry may be understood to
come from microscopic crystaline structure (e.g. the six-fold
symmetry of ice crystals). In the Hele-Shaw experiment (finger-
ing in a viscous fluid) there is no such microscopic structure
due to an underlying lattice. Why does your experiment show an
approximate six-fold symmetry ? (N. Packard)

A: We imposed the symmetry by inscribing grooves on one of the
plates of our cell.

Q: Is there any dependence of transition pressure on the speed

of changing pressure in your experiment ? My guess is there

might be some special relaxation time for each special pattern.
(T. Haseda)

A: We have never investigated this question. In fact, in all
the experiments we have done, we have taken care to ensure that
the changes were slow compared to relaxation times. In the

analogous problem of electrodeposition of zinc, we have looked at
AC electrical characteristics. The relaxation times are quite
short.

Q: You mentioned about 4,000,000 particle aggregation, which is
the largest DLA pattern I've ever heard of. What happened, I
wonder ? (M. Matsushita)

A: The very large simulations were done by P. Meakin and R.
Ball in order to see whether lattice effects become important at
long times. The preliminary result is that on a square lattice,
anisotropy does begin to dominate and may eventually destroy the
fractal for this case.

C: The relevance of the Hele-Shaw experiments reported by Dr.
Sander to the current problems of icosahedral growth is very
clear. As well as using an anisotropic environment of five-fold
symmetry, there are possibilities of changing the metric of the
space of the liquid into which air is injected so that the peri-
meter of the region changes to some other power of the distance
than linearity.

Dr. Sander replied that experiments with the Penrose tiling
were already being done but that it would also be interesting to
use, for example, a hyperbolic film. (A. Mackay)

C: I'd like to make a comment on the snow crystal. In
principle, there are two processes relevant to growth of snow
crystals. One is the diffusion process and the other is the
surface kinetic process for incorporating water molecules into
the crystal lattice. (T. Funakubo)
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