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Dynamics of Random Interfaces with a Nonzero Initial Order Parameter
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The dynamic behavior of a system quenched below the order-
disorder transition temperature is studied. The system consists
of random interfaces between two stable phases and initially has
a finite order parameter. It is found by the theory and the
computer simulation that the area density of the interfaces shows
an exponential decay with time, instead of the power law decay in

the case of vanishing initial order parameter.

We will investigate the systems that the order parameter
denoting the degree of the order is a scalar quantity and takes
two values with opposite signs below the transition temperature,
such as ferromagnets, binary alloys and so on. When the system
is quenched from a high-temperature (disordered) phase into an
ordered phase, distinct interfaces between the two stable states
form. The progress of the system towards thermal equilibrium can
be regarded as one in which the folded random interfaces shrink
and gradually come loose. It is well known that the total area
of the interfaces per unit volume decreases with time as t_l/2
(Allen & Cahn:1979; Kawasaki & Ohta:1982). The initial state of

the system can be supposed to be such that the interfaces are

infinitely convoluted so that they fill up the whole system and
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that two stable states occupy equal volume, that is, the initial
order parameter M(0) vanishes.

In the present paper, we extend our study to the cases for
nonzero initial order parameter and demonstrate that the time
dependence of the area density A(t) shows an exponential decay,
instead of the t_l/2 law (Toyoki & Honda:1986). We illustrate
the difference of the temporal behavior of the spin configura-
tions in the ferromagnet between M(0)=0 and M(0)#%0 cases in Fig.
1, which is obtained by a Monte Carlo simulation of a spin-flip

kinetic Ising model (KIM). In the case M(0)=0, most of the sites

belong to an infinite cluster, while in the M(0)#0 case some
islands of the minor phase are surrounded by the sea of the major
phase. The smaller the island is, the faster it shrinks. Thus
it can be easily predicted that the case M(0)#0 results in the
exponential decay of A(t). In the next section, we discuss

quantitatively this statement by the Monte-Carlo simulation of

KIM.
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NUMERICAL EXPERIMENT

The Hamiltonian for KIM is given by H=—J2<i'j>0i0j(J>0),
where 0i=il and the sum runs over distinct nearest-neighbor
pairs. The initial configurations are obtained so that spins on
sites are randomly distributed under the fixed M(0). Our simu-
lation is performed at zero temperature, because our main
interest is not in the temperature dependence of A(t), but in
their dependence on M(0). The system evolves by the standard
spin-flip Monte Carlo procedure and the unit of time is estimated
as the number of attempted spin flip per site. The spin flip is
executed inevitably in the direction to make an energy lower for
zero temperature. We simulate the systems of 135x135 spins in
two dimensions and of 45x45x45 spins in three dimensions.

In Fig.2 we show various time (Monte-Carlo step) dependences
of A(t), where A(t) is calculated as the number of bonds between
neighboring spins with opposite signs, that is, A(t)=-2(oi0j—l)/
-1/2

2. The t behavior of A(t) is seen in the case M(0)=0. When

M(0)#0, A(t) decreases more rapidly than t_l/z. The ratio of
A(t) to Ag(t), obtained from the initial condition of vanishing

d/2] [see Fig.3]. We find the dependence

M(0), behaves as expl[-Tt
of T on the initial order parameter M(0) as shown in Fig.4, that

is,
§
I =« [M(0)] (1)

with the respective index 8=2.2 in the two-dimensional case and
§=2.3 in the three dimensional case. The error is estimated as

about 10%, so that dependence of § on the spacial dimension can

not be decided on the basis of a few trials.
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Fig. 2 Log-log plot of total length of interfaces
versus time (in Monte Carlo steps) in the 135x135
system, where N+ and N_ are the number of up spins
and down spins at the initial state, respectively.
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Solid line indicates t decay.
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Fig.3 Semilog plot of

A(t)/AO(t) vs tdlz,

where Ao(t)«t_l/z.

The spacial dimension-
ality is denoted by d.
The upper figure is 45
x45x45 system, and the

lower one corresponds

to 135x135 systems.
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Fig.4 Log-Log plot of T defined in the text
versus M(0). The factor I' is evaluated from
the slop in Fig.3. The straight lines have
slopes §=2.2 in the two dimensional system and
§=2.3 in the three dimensional system,

respectively.

DEVELOPMENT OF THE u-FIELD THEORY
In this section we study analytically the motion of the
random interfaces to examine the Monte-Carlo simulation results.
The velocity normal to the interface at the position z(g,t) is

given by (Allen & Cahn:1979)
v(¥) = L'K(T), (2)

where K(f) is the local mean curvature and L' a kinetic coef-

ficient. The position of the interface is a function of the
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coordinate on the interface g and the time t. The theory by
Ohta, Jasnow and Kawasaki (1982) seems to be most successful to
investigate the dynamic of the random interface. Hereafter we
will denote their theory u-field theory, after an artificial
field introduced by them. Since in their work only the case
M(0)=0 is considered, we develop the u-field theory to the
general cases M(0)#0.

In the u-field theory, the interface is represented by the
nodes of a scalar field u(;,t). The equation for u(;,t) is
determined so that the motion of its nodes should be equal to
one derived from Eg.2. Since du(;,t)/dt=0 in the frame moving
with the interface, the velocity of the interface is obtained
as v(r,t)=-(1/|Vu|)3u/3t. Using the relation K=V-n, where 1 is

the unit normal vector given by ;=Vu/|Vn|, we have
du/ot = L' (V2-BR:VV)u. (3)

By neglecting the nonlinear terms, this equation becomes a
diffusion equation:

du/dt = L Vzu (4)

with L=L'(1l-1/d). Averaging any quantity with respect to the
configuration of the interfaces can be transformed to the one
with respect to {u(;,t)}. The probability distribution of
{u(;,t)} is assumed naturally to be Gaussian with the mean value
of u(%,t), <u(r,t)>=U.

The density of the order parameter M(t) and the density of
the area of interface A(t) are given , with use of a step func-

tion e(x)=sgn(x), by

Me) = v iatce iz, 6> (5)
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and

A(t)

v-ljd;[dd-lz<s<z-z(z,t)>>

<|vuls(u(¥, t))>, (6)

respectively, where the angular brackets <--+> denotes an aver-
aged quantity over the probability distribution of {u(;,t)}.

The Gaussian distribution of {u(f,t)} immediately leads to

M(t) « erfx(t)], (7)
A(t) « (t+a) M 2expl-x2 ()1, (8)
x(t) « U(t+a)d/4 (9)

with the use of the correlation length o at the initial state.

From (7), we have the physical meaning of U such as
U ~ M(0), (10)

where hereafter the small dependence of a is neglected. Substi-
tuting Eg.10 into Egs.8 and 9, we obtain &§=2 for the index in
Eg.1l, which differ from the value derived by the computer simu-
lation. This may be arisen from the linear approximation for
Eg. 3.

To summarize, we conclude that the generalized u-field
theory is successful in explaining the dynamic of the random
interfaces with the arbitrary initial conditions.
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