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Simple models with both discrete and continuous variables at every site
of a lattice are used to investigate solidification and aggregation in two dimen-
sions. These models display a rich variety of macroscopic forms growing from
small seeds. Transitions between macroscopic forms are seen as parameters in
the model are varied, and these transitions may be compared with those seen in
experiments.

Crystal growth is an excellent example of a physical process that is micros-
copically very simple (attachment of molecules onto a solid), but that displays a
beautiful variety of macroscopic forms. Many local features are predicted from
continuum theory,! but global features may be analytically inaccessible. For this
reason, computer simulation of idealized models for growth processes has become
an indispensable tool in studying solidification.»3 Here we present a new class of
models that represent solidification by sites on a lattice changing from zero to one
according to a local deterministic rule. The strategy is to begin with very simple
models that contain few physical elements, and then to add physical elements gra-
dually, with the goal of finding those aspects responsible for particular features of
growth. The models display both local and global features that may be compared
to the results from solidification experiments.

The simplest deterministic lattice model for solidification is a two dimen-
sional cellular automaton with two states per site to denote presence or absence of
solid, and a nearest neighbor transition rule. Further, we will consider only rules
which have the property that a site value of one remains one (solidification only;
no melting or sublimation). An additional constraint for the rules considered here
is that they depend on neighboring site values only through their sum:

ai*! = flo) with oi= X ds )
8 & Nbrhd.
The domain of f ranges from zero to the number of neighbors; f takes on values of
one or zero.

These rules display four types of behavior for growth from small seeds:” (i)
No growth at all; This certainly happens for the rule that maps all values of G to
zero. (ii) growth into a plate structure with the shape of the plate reflecting the
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lattice structure; an example is (o) =1 when o> 0. (iii) growth of dendritic
structure, with sidebranches growing along lattice directions at unit velocity; this
type of rule is obtained by adding growth inhibition to the previous rule, e.g. with
flo) =1 when o =1. Physically, growth inhibition occurs because of the com-
bined effects of surface tension and radiation of heat of solidification. (iv) Growth
of an amorphous, asymptotically circular form at less than unit velocity. This
form is obtained by adding even more growth inhibition, e.g. with f(c) = 1 when
c=2.

The dendritic forms produced by rules in class (iii) exhibit a striking self-
similarity: every 2" time steps, the growing seed forms a plate, then dendritic
arms grow from the corners of the plate, sidebranches form, and finally all side-
branches grow into a plate and the process is repeated (Figure 1(a)). This self-
similarity may be quantified with a growth dimension that can take on fractional
values.5 %7 The growth dimension is measurable in experiments, but requires data
consisting of the length of the boundary as a function of time, in contrast to the
dimension that is often used to characterize other two dimensional patterns like
diffusion limited aggregates.® It is possible, nevertheless, to see remnants of a
snowflake’s history embedded in its internal structure, and these sometimes indi-
cate dendritic-plate alternation, with plate boundary length growing exponentially
(Figure 1(b)).

The most crucial physical ingredient missing from the cellular automaton
model is the flow of heat. This may be modeled with the addition of a continuous
variable at each lattice site to represent temperature. The time evolution of the
temperature field is given by a discrete approximation to the heat equation,
T=cV?T. This amounts to changing a particular site’s temperature T; by taking the
average over nearby sites G;, and moving T; toward ©; by an amount determined
by the diffusion constant ¢. This relaxation method is numerically stable, so that
an appropriate choice of diffusion constant assures an accurate simulation of a
continuous temperature field in continuous space and time.

The addition of solid again uses a local rule that depends on ©;, the sum of
solid in neighboring sites. Now, however, the local rule yields a continuum tem-
perature threshold value, Ty,,=(0). If T;<T,.. the site is filled with solid; oth-
erwise the site remains empty. The amount of neighboring solid ¢; may be con-
sidered as a coarse approximation to the curvature: a boundary site near a con-
vexly curved interface will have fewer neighbors filled with solid than a site near
a flat interface. The Gibbs-Thompson effect implies that solidification is more
difficult at a convex interface because extra energy must be invested against the
force of surface tension. This may be modeled by choosing a function f that takes
low values for small ©;, and high values for larger o;. The form of f to be used
henceforth will be a quadratic maximum:

flo)) = Ao (1-0). 2

*Note that these four classes are quite distinct from the four classes observed in a broader
context by Wolfram.4 Wolfram’s classification is on the basis of asymptotic behavior of a cellular
automaton rule acting on a random initial condition. Under such circumstances, all the rules dis-
cussed here would lead to fixed points, and so would be in Wolfram’s class two.
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Figure 1. (a) Growth from a single site initial condition under the action of a
solidification cellular automaton rule on a hexagonal lattice. The grey level
changes with time, and repeats a cycle of light to dark every 2" time steps to
display the self-similarity of the growth process, as the growing seed alternates
between dendrite and plate forms. (b) A picture of a snowflake, showing inter-
nal structure reminiscent of the dendrite-plate alternation.

The final ingredient in the dynamical rule is the effect of solidification on the
temperature field. When solid is added to a growing seed, latent heat of
solidification must be radiated away. This is modeled by causing an increment in
the temperature field. The amount of increase corresponds crudely to the increase
in the temperature gradient at the interface. In the following simulations, we sim-
ply set the temperature to a constant (high) value when new solid is added. This
means that heat flows to nearby interface sites and inhibits their solidification.

This model is a hybrid of discrete and continuum elements. The addition of
solid happens in a discrete way, which can be only a very coarse approximation to
solid deposition on molecular length scales. There is about ten orders of magni-
tude between the capillary length and the size of a macroscopic crystal; there is
only about 2.4 orders of magnitude between the lattice spacing and the size of the
macroscopic crystal in the model. Thus, the micro-scales are brought compara-
tively quite close to the macro-scales, with the hope that many of the generic
macroscopic features of the dynamics will remain. In this respect, this model is
similar in spirit to recent molecular dynamics simulations of fluid flow using a cel-
Jular automaton rule.%> 10

The use of a continuum variable at each lattice site to represent temperature
gives the model unique features lacking in a purely discrete cellular automaton
model. The dynamics may now become parameterized. One parameter is the
diffusion rate. Another parameter is the amount of latent heat added upon
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solidification. Other parameters may characterize the local temperature threshold
function. These parameters may be varied to obtain transitions between macros-
copic forms that may be compared with experiment. Figure 2 (a-c) shows a
sequence of pictures as the parameter A is varied from low to high values.

When A is small, more heat must diffuse away before a boundary site will
solidify, so the diffusion length is quite long compared to the lattice spacing. Fig-
ure 2(a) illustrates such a case. In the limit of infinite diffusion length,
solidification has become known as diffusion limited aggregation.

The usual simulations of diffusion-limited aggregation model diffusion by
random walking particles which can stick to a growing seed.® 11 These simula-
tions show the resulting macroscopic form to be a fractal with dimension of =1.7.
Objects with other fractal dimension were also observed. Within the framework of
the present model, diffusion limited growth is obtained by having the temperature
threshold be small for all values of o; i.e. by setting A in Eq. (2) to be small. The
resulting macroscopic form is displayed in Figure 2(a). The mechanisms for pat-
tern formation in the Witten-Sander model and the present model are slightly
different. In the former, voids in the growing structure form because long arms
shield regions from subsequent particles. In the latter, voids form because heat is
trapped between arms. Nevertheless, the fractal dimension of the two agree to the
present accuracy, indicating that they may be in the same universality class. Simi-
lar agreement has been indicated in a deterministic simulation of diffusion limited
growth using a continuum model.!2

Figure 2(b) illustrates the effects of raising A in Eq. (2). There are no longer
arbitrarily large voids, but rather a chaotic network of tendrils that appears to have
dimension two asymptotically. Though the tendrils are seen to grow in every
direction, they show some tendency to grow along lattice directions. The tip split-
ting instability is apparcnt,13 preventing the formation of long dendrites with regu-
lar sidebranching.

When A is raised even further, the tip begins to stabilize, and the tip splitting
instability gives way to the sidebranch instability. 1 Anisotropic macroscopic
forms have also been seen in stochastic models for diffusion limited aggregation
(using an integrated version of random walking particles), if the rule governing the
sticking of the particles is made anisotropic.4 As an anisotropy parameter is
varied in the sticking rules, transitions similar to those seen in figure 2 are
observed.

Depending on the value of A and the diffusion constant, the sidebranches can
show a variety of structure. In addition to simple, regular sidebranching, the side-
branches can “period double” to display long and short sidebranches alternately.
This is evidence for pattern selection mechanism that involves a simple causal
relationship between sidebranches rather than filtering of noise at the tip.13

The macroscopic forms yielded by this model show remarkable similarity to
experiments in pattern formation. The most recent experiments are in two rather
different systems: the Hele-Shaw cell, evolution of an interface between two
liquids of different viscosity trapped between two plates;!® and electro-deposition
of zinc from an electrolyte solution confined between two plates.1?> 18 Both these
experiments show transitions between anisotropic forms such as diffusion limited
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Figure 2. As parameters are varied in the deterministic growth rule (e.g. A in Eq.
2) transitions occur between different macroscopic forms: (a) Amorphous, isotro-
pic fractal growth. The form displays fractal scaling over 2.4 orders of magni-
tude in length, with a fractal dimension of 1.7+.1. (b) Tendril growth, dominat-
ed by tip splitting, but no apparent fractal structure. Some anisotropy is evident.
(¢) A macroscopic form showing strong anisotropy, stable parabolic tip with side
branching. The temperature field is denoted by a grey scale.

aggregates and forms that show strong anisotropy. In the case of electro-
deposition, the anisotropy comes from the underlying crystal structure; in the
Hele-Shaw experiment, the anisotropy is imposed by the boundary conditions
(scratches on the two dimensional surfaces containing the fluids). A careful com-
parison of this model with experiment will require new data analysis techniques
based on the processing of spatial images.

I am grateful to many people for discussions and comments; most recently
these include J. Crutchfield, N. Goldenfeld, Y. Kuramoto, H. Levine, L. Sander,
Y. Sawada, and R. Shaw. I am especially grateful to D. Farmer and S. Wolfram
for discussions and extensive comments on earlier versions of the manuscript.
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Q: I understood that your model is two-dimensional. What would
be reached by adding one dimension? The snow flakes, though
flat, are three-dimensional structures. (Y. Collan)

A: I would expect to see three dimensional structures like
those seen in real crystal growth. Current limitations on compu-
ter memory prohibit three dimensional simulation.

Q: There is some parallel work performed in Ann Arbor which has
had similar results. Garik, Hautman, Hautman, and Richter (Physi-
cal Review A) have looked at deterministic growth for a mixed
lattice-continuum model. Sander, Ramanlal, and Ben-Jakob (Physi-
cal review A) have given a purely continuum theory which is
deterministic and seems to produce fractals.

Is the transition from random fractal to dendrite sharp in your
system? (L. Sander)

A: I amglad to hear that a simulation of the fully continuous
system seems to match the results of my semi-discrete model.
This positive comparison for one parameter value increases
confidence that my similations of other parameter values are
accurate. I cannot yet tell how sharp the transiton is from
random fractal to dendrite. Simulations must be done on a larger
lattice to answer this question.

Q: Have you tried to simulate the evaporation forms using your
deterministic model? You'll obtain a quite different change in
forms with time. During evaporation, a hexagonal plate is expec-
ted to apear. However, the orientation of the hexagonal plate may
be rotated by 30 degrees from that of the initial larger plate.

(T. Kuroda)

A: I have not tried evaporation or melting, but it should be

easy with the computational machinery I have already developed.
Thank you for the suggestion.
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