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Cellular automata and coupled chaos have been investigated in one-
dimensional lattice chain of N-equivalent switching elements. A
switching element shows the bistability and behaves like a random
nerve net. The firing activity St of each element takes one of

the symbolic states of 1 or 0 in accord with St20.5 or St<0.5,

respectively. The evolution of the symbols exhibits rich struc-
tures of cellular automata for several types of local interaction.
According to Wolfram, classes 1,2 and 3 are frequently observed.
Spatial period doubling of the growing elements, running modes of
the symbolic solitons, interference of the solitons, and the
bifurcations of the classes are presented.

INTRODUCTION

Cellular automata have been widely proposed as computational
tools to study the complex nature such as self-reproduction, evo-
lution of organization in biology and flip-flop of the lattice
spins in the Ising model (e.g., Vichniac:1984). In one-dimension-
al (1D) cellular automata, 1D lattice chain is composed of simple
identical components, where each component has a value of 1 or 0
and interacts with the neighbourhood (Wolfram:1984). Symbolic
representation of the lattice dynamics in a couple of iterative
map equations is expected to develope cellular automata if each
component of the lattice has one of two symbolic states. In gen-
eral, a switching element or a bistable element takes either one
of two symbols of on- and off-states. Our special concern is in
the field of nonlinear networks; there is a trend to understand
the information handling structures in the nonlinear networks such
as extended computor system and neural network system by means of
cellular automata (Choi & Huberman:1983, Huberman:1985). In this
paper, motivated by the recent elavorated works, we investigate
the global dynamics of cellular automata and coupled chaos devel-
oped in 1D lattice chain of N-equivalent switching elements.

DESCRIPTION OF THE MODEL

A couple of the iterative map equations are proposed as
follows
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i _ el _ . iy _ i-1 i+l
St+l = F( 4St + 2 R 51n(2wst) T f(St ,St_l)), (1)
F(y) = ( 1 + tanh(y))/2 , (2)

where S is the order parameter of the i-th element (i=1,2..N) at
dlscretg time t, R and T are control parameters, and function £
denotes the local interactions with the nearest neighbours. Each
element corresponds to a McCullough-Pitts random nerve net with

the firing activity S%G;I=[O,1] (Amari:1974). With T=0, function

F in Egs. (1) and (2) has the following properties (Aoki et al.:

1984) as a function of R;

(A) O<R<l/m, S=0.5 is unstable and S, is oscillatory with period 2.

(B) 1/m<R¢3/m, S=0.5 is stable equi-
librium point.

(C) 3/m<Rgl.387, S is unstable and S
shows the bistability.

(D) R>1.387, S,_ shows period doubling
blfurcatloﬁ route to chaos._

If St+l and St are replaced by S in Eq.

(1), we can construct a catastrophe
curve which is a section of the folded
manifold of Riemann-Hugoniot type cata-
strophe by Thom:1975. Solid line_in
Fig.l shows the catastrophe curve S=
F(S,R) which satisfies the condition of
a conflict strutum. Properties (B)
and (C) directly result from the cata-
strophe curve and properties (A) and
(D) are related with the destabiliz-
ation of the equilibrium points in Eqg.

Xz

(1). Fig.l Folded manifold
When N-equivalent switching ele- of Riemann-Hugoniot type

ments are coupled (T#0), properties in catastrophe of the alge-

(A) - (D) mentioned above no longer hold bralc set U= {(xl,xz,x3)

for any values of R, since each ele-

ment always suffers the local stimuli erz}, where x1—F(x1 2t

from the nearest neighbours. In the 2-x351n(2nx1)), and x

coupled lattice map, the firing activ- 1

and x; correspond to S

. 1 P . .
ity St exhibits the chaotic motion and R, respectively.

trapped in either one of two basins of Solid line is a section
attraction which form a symmetric pair of the folded manifold
around S=0.5. In accord with Sl>0 5 at x,=-4.

or st <0 5, two symbols 1(4) or 0(+) are
deflned, respectively.

RESULTS AND DISCUSSIONS

In this paper, we investigate the cellular automata with the
following rules of the local interactions

a i-1

£

51n(4ﬂS ) (3)

i-1 1+l

b
SLn(Zﬂ(S + t l) + ¢) , (4)

£

1]
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i+l

c Lig sin(2msy T + ) , (5)

. i-
£ = s:Ln(21rSt
where ¢ is the phase lag. We describe the global dynamics of the
spatial period doubling of the growing elements, running modes of
the symbolic solitons, interference of the solitons, and bifurcat-
ions of the classes.

1. Spatial period doubling of growing elements.

Let us consider one way coupling of N-switching elements with
the local interaction £2, in which values of control parameter R
grow by R(i+l)=R(i)+AR (i=1,2..N). It may describe an artificial
model of some kind of self-reproduction in the nonlinear networks.
Fig.2 shows the firing activities of N-switching elements as a
function of R(i) with T=0.2, R(1)=0.9, R(600)=1.5, AR=0.001, and
N=600. In the course of the growth,
i

St shows Zk spatial doubling as a func-

tion of R(i). Not clearly seen in the a _t
figure, but it is to be noted that the - 1%
symbolic configuration of the growing N =
elements is 101010.. , in the range

0.9<R(i)gl.18. Namely, if the j-th b.

element 1s trapped in a basin of attrac- %
tion with 2K-period cycle and takes -
a symbol 1, then the next element is c.

trapped in another basin of attraction Stey

with the same period and takes the
symbol 0, and so on. With further
growth of the elements, 2k—period cycle
bifurcates successively into chaotic
motions, but the elements keep the

i
St
I 1

St
Fig.3 Running modes of
the symbolic solitons in
(a) linear lattice chain,
(b) looped lattice chain,
with N=31, and iterations
up to t=300, and (c) the
iterative mapping of the
firing activity of the
15th element in (b), with
o — £=30005000.  Control
09 R(i) 1.5 parameters are;T=0.2, R=

1.2. In (a)v(c), the
initial states are chosen

Fig.2 Bifurcation diagram of the

firing activities of the growing to be $%=0.056. There
elements as a function of R(i). is sensPtive dependence
After the initial transients, the on initial states. fa
firing activities with t=80071000 must be taken into

are plotted. account from 1lst iterate.
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symbolic configuration 101010... With 0.9<R(i)g<l1.38 and 1.43g
R(i)<1.5, the bifurcation diagram is symmetric around S=0.5.

In several regions, denoted by C-C, the elements show flip-flop
jumps from a basin of attraction to another,i.e., chaos-chaos
transition (Aizawa:1982). In the range of 1.38gR(i)gl.43, the
bifurcation diagram is symmetry-broken. Detailed descriptions
will be reported elsewhere.

2. Running modes of the symbolic solitons.

With a rule fa, the symbolic domains of the initial disorder
run through the lattice chain. Fig.3 shows the cellular auto-
mata of N=31 elements in a linear lattice chain (a), and a looped
lattice chain (b), respectively. For the linear lattice chain,
the symbolic domains formed by the initial disorder disappear at
the N-th element and the final symbolic configuration is 0101..
010. For the looped lattice chain, the symbolic domains keep
the running modes. The propagation of the symbolic domain is
guite similar to the soliton propagation in 1D molecular electron
devices by Carter:1984. A symbolic, _mismatch of the i-th ele-
ment in a configuration of 0101...0110101.. at Eime t flips to 0
at t+2, 0 of the (i+l)-th element to 1 at t+m, 1 of the (i+2)-th
element to 0 at t+n and so on, where velocity of the symbolic
soliton is given by v_=2/(n-%). At T=0.2, the propagation of
the symbolic solitons™in a looped lattice chain is observable
only with 0.66<R<1.21 under the initial states specified in Fig.
3. The velocity increases with decreasing R; vs=15/ll7 at R=

1.2 and v_=1 at R=0.68.

At RV0.65, the homogeneous configura-

tion oscillates with period 2 by 111...111+000...000~>. With
1.21<Rg1.38, the initial disorder

110100..11001 keep a class 2

cellular automaton.

b. loop|  v=0.32
=wﬁ
%ﬁ
e —
c. loop2 v,=0.32

RSO e i P

Fig.4 (a) Interference patt- Change of the inter-

Fig.5

ern of the solitons in loop 2,
(b) running modes of the solitons
in loop 1, and (c)running modes
of solitons in loop 2 without
the perturbation.
meters are; R=1.1, T=0.2 for
both loops. t=01380.
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ference patterns of the
solitons in loop 2 as a func-
tion of the velocity ratio
VZ/V17(a)2‘5' (b)2.2, (c)~1
and ~(d) 0.4, respectively,

where v1=0.32. t=0v350.
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With R>1.38, cellular automata reveal chaotic patterns.
In progress of a cellular automaton, the firing activity of

each element exhibits chaotic motion. Fig.3c shows the iterative
mapping of the firing activity of the 15th element in a N=31
looped lattice chain. Chaotic motion is trapped in a basin of

attraction 4 (or +), but jumps to another basin of attraction +(or
4) whenever the symbolic soliton passes through the element.
The flip-flop jump process is qualitatively explained by virtue
of Riemann-Hugoniot catastrophe (cf. Fig.l). Two symmetric po-
tential minima in a conflict strutum form two symmetric basins of
attraction which are discriminated by some potential barrier (Thom
:1975) . The chaotic motion trapped in a basin of attraction
jumps to another basin of attraction if the fluctuating force
from the nearest neighbour is sufficiently large. The velocity
of the soliton is expected to increase by reducing the potential
barrier height and thus by decreasing the value of control para-
meter R. Kaneko:1986 has reported different kind of the
soliton propagation in coupled logistic lattice, which will appear
in this issue.
3. Interference of the solitons.

As an application of the solitons propagation, let us consid-
er the soliton dynamics of a looped lattice chain (loop 2) per-
turbed by the solitons propagation in another looped lattice

chain (loop 1). The proposed map equations are;
i Lovi et N Yi, _ N ca Vi+l
loop 1 : St+l_ F( 4St + 2 R 51n(2ﬂSt) T £ (St )) ., (6)
i _ el _ . iy _ i-1 Yi+l
loop 2 : St+1_ F( 4St + 2 R 51n(2ﬂSt) T f(St ,St Y),  (7)
i-1 i+l . i-1, vi+l
and f(St ,St )= s:.n(41T(St + St )),
where i=1,2..N, and entities in loop 1 is denoted by tilde.
If gt+l=0 in f of Eq.(7), then solitons in loops 1 and 2 propa-
gate independently in the opposite direction with the velocities
vy and v respectively. Fig.4 shows (a) a typical example of

2’
the interference pattern of the solitons in loop 2, and (b), (c)

the running modes of the solitons in loops 1 and 2, respectively,
where N=31. In Figs.4n6, all the initial states are weakly ran-

domized by Sl=§;=0.214+ El, |£l|<0.013, where El are random vari-

ables. Fig.5 shows change of the interference patterns of the
=|
Fig.6 (a) Interference a loop 2 V2/V| !
pattern of the solitons R
in loop 2, and(b)running é%%ﬁa
modes of solitons in g%gg%_“_ z ¥
loop 1. Contyrol para-
meters arg; T=T=0.2, R= b. loop | v|=0.7 .
0.8, and R=0.9. The ite- e e
: i'%~"‘:“‘=~‘£—i*—\_ e
iizzgns were done up to e "_\_“_m;\—ﬂ_\‘—\—‘“—mh—‘“’"‘“—u_:“‘-——\:‘_
= . S
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solitons in loop 2 as a function of the velocity ratio V2/V1‘

There appear regular interference patterns in a, b; several
domains run through the lattice with velocity v, in a, and rec-
tangular tile pattern is seen in b. By decrea%ing the velocity
ratio, the tile patterns bifurcate to irregular or chaotic pat-
terns with vz/v1§ 1. In Fig.5d, fully developed turbulence is

clearly shown. Fig.6a shows another example of the interference
pattern in loop 2, in which traces of the running modes of loop 1
are observed, as indicated by arrows. Although there is no room
to discuss the mechanism of the formation of the interference
pattern in detail, it is briefly to be noted that the presented
results give a new regime of the soliton dynamics in the cellular
automata.

4. Bifurcations of the classes.

With interaction rules fb and fc, a variety of cellular
automata are observed, which are classified into classes 1, 2 and
3 cellular automata. According to Wolfram:1984, we briefly men-
tion about the classes. Class 1 cellular automata evolve after
a number of time steps from almost all initial states to a unique
homogeneous state, all sites having the same value. Class 2
cellular automata exhibit stational symbolic series of which con-
figurations depend on the control parameters and also on the ini-
tial states. In some cases, a few lattice sites in a configu-
ration oscillate periodically. Class 3 cellular automata exhib-
it aperiodic or chaotic patterns for almost all initial states.

In Fig.7, the cellular automata with rule P are shown as a
function of T with fixed values of R=1 and ¢=271/3.5. The ini-
tial conditions are weakly randomized. With Tg0.1, cellular
automata look like class 1, but symbol 1 is persistent at the
boundaries of the linear lattice chain (N=90),i.e., class 2, as
is shown in Fig.7a. For class 2 cellular automata, the symbol-
ic configuration is divided into several territories (Fig.7b,c)
of 0101..01. Bifurcation from class 2 to class 3 cellular auto-
mata occurs at T=0.16. With 0.165Tg0.235, chaotic patterns are
also bound in the territories (Fig.7d). A few lattice sites at
a boundary between two territories always suffer the local stim-
uli from both sides of the territories. If the local stimuli
are not sufficiently large, firing activities of the lattice
sites stay in one basin of attraction. Therefore, chaotic pat-
terns do not diffuse outside the boundary, and informations are
stocked in each territory. With Tz0.235, chaotic patterns dif-
fuse through the boundaries. The developed turbulence in Fig.7
-e,f indicates the procession of the informations throughout the
lattice chain.

Bifurcation from class 1 to class 2 cellular automata is
also observed in the different region of the control parameters.
Wwith R=1] and T=0.22, class 1 cellular automata of symbol 1 are
stable in the range of 21/2.921¢¢<27/1.59 and bifurcate to class
2 cellular automata with ¢g2m/2.921. With ¢g27/3, class 2 cell-
ular automata bifurcate to class 3 (cf. Fig.7d). c

In Fig.8, another example of cellular automata with rule f
in the N=90 linear lattice chain is shown as a function of ¢
under the fixed values of R=1.12 and T=0.67. Dusty patterns of
class 3 are observed with ¢g-m/3.6. In the range of -m/3.21%¢%
-7/3.6, nucleations of the dust occur in several regions at the
initial stage of the iterations (Fig.8b), and the persistent
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a.
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Fig.7 Cellular automata
of rule fP, with N=90, R=
1 and ¢=27/3.5. Values
of T are; (a)0.l1l, (b)0.13,
(c)0.14, (d4)0.22, (e)0.25,
and (£)0.28, respectively.
The initial states are
weakly randomaized by So=

0.514 + &£+, £ <0.0138.
t=0~300.

Fig.8 Cellular automata
of rule f€, with R=1.12
and T=0.67. Values of ¢
are; (a)-w/2.5, (b)-n/3.5,
(¢)-n/3.7, (d)-n/4.95,
(e)-n/5 and (f)-n/5.5, re-
spectively. The initial
conditions are the same as
those in Fig.7. t =0~300.
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series (e.g., 1111) follows after each nucleation. The dusty
pattern is bound in the territory. Class 2 cellular automata
appear in the range of -w/3.75¢5-7/4.84. After the dusty pat-
tern has died out, several 0 sites surrouded by 1 sites are re-
tained, as is shown in Fig.8c. With ¢>-m/4.84, class 2 cell-
ular automata bifurcate to class 3 cellular automata of cloudy
patterns (Fig.8d,e,f). Around the bifurcation point, the
initial transients are long lived for both class 2 and 3 cell-
ular automata. In Fig.8d, clouds are almost coalescent at tv
300, but never fall into class 2 cellular automaton with t>>300.

CONCLUSION

Global dynamics of cellular automata in a lattice chain of
N-equivalent switching elements which behave like nerve network
have been investigated. Spatial period doubling of the growing
elements, running modes of the symbolic solitons, interference of
solitons, and the bifurcations of the classes are recognized.
Chaotic motions of the firing activities are essentially impor-
tant for the developement of cellular automata. For class 3
cellular automata, chaotic patterns of the symbols are caused by
chaos-chaos transition of the firing activities. The 01 symme-
try in cellular automata is assured by m-rotational symmetry of
two basins of attraction. In any case of class 3 cellular auto-
mata, chaotic motions of the switching elements are cooperative,
and the auto-regulation of a chaotic pattern in the symbolic
dynamics is uniquely determined by a specific interaction rule,
control parameters and initial conditions.
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