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The capsule model which has been used to extend the Spektor's principle to
the case of thick section is used to derive an equation for the determination
of the surface-area-proportional sphere size distribution from the distribution
of the length square of the test line intercept contained within the sphere.
The intercept length square is detected as chord length square (CLS) on the
test plate. The range of CLS is divided into % classes of the length square
equal interval 4(/?) . The number of the ;-th class CLS per unit test line
length is given by;

ni(i) = B1E40N) + AT 9L NLD),

where =,(i) is number of the 7-th class CLS per unit test line length; N.,(I) is
number of the /-th sphere per unit test space volume; ¢ is the thickness of the
section; (i, J) is VI-(i-1)=J/I-71}; 4(I*)is class interval of CLS. When ¢=
0, we obtain an extremely simple relationship;

NU(I)=-%."1 if-dzl)-m i)

This equation can be reformed to be a difference equation. It should be empna-
sized that that does not contain ; because that has no conversion matrixes.

INTRODUCTION

Wicksell studied the relationship between the sphere radius distribution
(histogram) F(R) and the disk radius distribution (histogram) f(r) on the test
plate of extremely thin section (t=0) in 1925 (F(R)—/f(r,t=0)). In 1967, Bach
extended Wicksell's method to thick section (F(R)—f(r,t)), Also, Spektor has
developed a relationship between the distribution of sphere radii and the
length distribution of test line intercepts (/) contained within the sphere for
the thin section in 1950 (F(R)—f(/,t=0)). This finding was extended by Baba,
Miyamoto et al (1980, 1983) who measured sphere size distribution from chord
length distribution using thick section in 1980 (F(R)—f(/,t)). A capsule like
model was used to derive the formula.

The main part of the conversion matrix for (F(R)—f(r,t)) and the term for
thickness in the conversion matrix for F(R)— f(/,t) are essentially identical.
Their conversion matrix is composed of 120 different values for the 15 grade
classification of the size. In this paper, the authors derived a formula for
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DETERMINATION OF SPHERE SIZED DISTRIBUTION FROM CHORD LENGTH SQUARE (CLS) DISTRIBUTION

determination of sphere size distribution from the chord length square (CLS)
distribution considering the thickness of section (F(4xR2)—f(I%,t))r using the
capsule model. Although the term for thickness is expressed by 120 coeffi-
cients, they are made of 15 different values for the 15 grade size classifica-
tions. Not only the table of coefficients for the thickness term is simple as
mentioned above, but also this formula becomes extremely simple as a difference
eguation when the thickness is zero.

SPHERE AND INTERCEPT SIZING

Assume a lot of different size spherical granules are randomly distributed
in a limited 3-D real space of volume ¢. Suppose test lines of the total
length 4 are randomly but parallelly drawn in the test space to sense their
intercepts contained within the sphere. The surface area of the sphere ranges
between ( and Smezr. The sphere area range is divided into 4 classes of area-
equal interval Smaz/k, (E>1).

The test line intercepts contained within the sphere will yield chords
intercepted by the disk periphery on the test plate. The intercept is denoted
by /. Let us call /2 simply CLS (chord length square). The CLS ranges between
0 and Smez/7 . This range is divided also into 4 classes of equal areas 4(/?)=
(1*)maz/ k = Spaz/ 7k (k> 0). The range of the i-th class CLS is defined by
A(12)(i—1)<(I2) < 4(1?)4. The square diameter of the /J-th class sphere ranges
between 4(/2)(]1-1) and 4(/?)I. The largest J/ is equal to 4, and is written by
Imax

Let denote the number of the /-th-class sphere in the test space by N(I)
and that number per unit test space volume by N,(I); the number of the /-th
class CLS by #(i); and that number per unit test line length by =i(i{); and the
n(i) within the contribution from the /-th class sphere by #x(i;7I).

THICK SECTION

Baba & Miyamoto (1980, 1983) established the capsule model to estimate the
probability that a test line is included in a size-defined sphere within the
certain intercept for thick section. This model has previously been applied to
the unfolding (hitogram-to-hitogram). conversion F(R)—r(l,1t). Since the
capsule model is basically independent of the class interval definition, this
model (see Figure) is employed in present study in which the class interval is
defined as being J4(/%).

Since the painted area on Figure (b) multiply by test line density, 4/v,
into the number of the i-th class CLS for one sphere I, the.number of CLS is
given by;

A Z 40 + VI (T =D = VT=7 )

for one sphere /. For all spheres 7/, the number of CLS of the i-th class is
given by

n(i;1)=%{%ﬂ(/2)+ts’d([z)(\/I-(i—l)—\‘]_i VIN(I).  eeeeeeeeereseesessessee e 1)
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/: length of the intercept contained
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1: class of CLS.

I: class of sphere diameter square (SDS).
4(I9: class interval of CLS and SDS.

Figure. Capsule Model

(a) Aeroview of the Capsule Model.

(b) Solid Figure of the Capsule Model for the /-th Class Sphere.

All test line intercept lying on the painted area of (a) and (b)
will have the length (/) ranging; +d(U®)vi-1</svdUH)Ji as

sholwn (b). The painted area of (b) is —1’53(1’)+t4m(¢1—(i—-1)
-vI=-1).

Accordingly, the number of the i-th class CLS per unit test line length is
given by summing up the contributions from all spheres ranging between /2 i and

Imaz,'

m(i) =Ig{7"a(12) S TTD VG DINGD Y e @

where ¥(7,/) is JT-(i-1)-JI-i for i=1,2 3,1 ; and 1 for Isi.

The ¢(I,i) is essentially egual to the matrix coefficient for the . desk-
area-to-surface-area conversion (F(4rR?)—f(2x7%,t=0)) as proposed by Johnson
(1946) and Kimura, Baba eta/ (1978). The inverse equation of Eg. 2 will be
obtained for the particular thickness of the section t. For this calculation,
the use of a computer is advisable, however, one can get easily each N.(I) by
manual means with stepwise calculation (sequential subtraction) stating from /
=i =1UInar, since (i, I)=0 for Isi;. The 15 values to construct the matrix
15 by 15 coefficients ¢(i,/) are listed in Table 1.
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CLASS DEFINITIONS

The coefficients of the conversion matrix, ¥(:,/), are defined asv/-(:i-1)

-JT=7 in the above discussion. We may newly define the conversion coeffi-
cients as;
v(i+%,1)=VI-(i=%)=-JVI-(i+%) (for i<,
=% (for i=1),
=0 (fori>1),
and
(i, I=-%)=VI-%)-(i-1)=-J(I-%)-() (fori<1I),
=/% (fori=1),
=0 (for i>1).
Both ¥(i+%.7) and y(i,I —%) are same and equal to;
v i) =JVI-i+%-JI-i-% (fori<I),
=/% (fori=1),
=0 (fori>1).

According to an experimental study to comparatively test the various
unfolding methods of F(R)— f(r), Cruz-Orive emphasized that bath conversion
coefficients ( ¢(i,I)) derived by Scheil (1931) and its variant ¢(i+%.1) by
Wicksell (1925) do not yield faithful results, but the other variant ¢(i,
I - %) yields rather faithful results. His conclusion may be correct for the
conversion F(R)—f(r). In the case of F(47R?)—f(I%t), however, we find that
v(i+%,I) and y(i,]-Y%) are exactly same mathematically.

At least y(7,/) should be smaller than 1, since the / class sphere of
which diameter is smaller than 4(/%?)] does produce smaller number of the I/-th
class CLS than

A(Z 401%) + 13T

which is given by Eqg.l1 for i=7. Then, the next equation may be the most
faithful.
. 4 b4
m(@) = FNEAGD + LA GDIND, 3)
where y*(i,7) is VI-i+% -JI-i-% for i=1,2,3,-(I-1); J/% for i=I; and

0 for i>I7, The values of y*(i{,])s for each -/ are listed in Table 1.

THIN SECTION

When the thickness of the section is zero, both Eg. 2 and Eqg. 3 become;

mi) = X0 N, (t=0).
1
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The inverse relation of the above equation is give by;

No(I) = _4 ma(d -;21)2; na(1)

- (i=1).

Eg. 4 can be expressed by a difference equation;

where s is /?. The simplicity of Eq. 4' is certainly one of the important
characteristics of this method, but it is even more remarkable that they
contain neither / nor i.

SPECIAL REMARKS

Until A. G. Spektor found a method for determining of the sphere size
distribution using the so-called linear analysis in 1950, stereologists had
estimated the sphere size distribution using "profile analysis" (analysis by
detection of a quantity of the profile such as diameter, perimeter, area et )
guided by Abel's integral equation. The differences of the characteristics
between these two analyses have been discussed (Baba et al: 1980, 1983:
Miyamoto et al: 1985). However the difference between them in basic
characteristics has been less examined.

Table 2 : Difference of Coefficient

Table 1: Coefficient ¢ among Various Methods
I=i w1y ¥l z X To(iI) TW(iI) COMMENTS

<0 0 0 .

0  1.000000 0.707107 "profile analyses":

1 0.414214 0.517638 r R ¢ c1y

5 0.317837 0.356394 ) Extended Scheil's eq.

3 0.267949 0.289690 (Bach)

4 0.236068 0.250492 r? R? ¥ § Extended Kimura's or

5  0.213422 0.223888 Johnson's eq.

6 0.196262 0.204305

7 0.182676 0.189103

8 0.171573 0.176863 .

9 0.162278 0.166731 so-called linear analyses:

10 0.154347 0.158163

- tended Spektor's eq.
11 0.147477 0.150795 / R dI-1 ¢  Exp P

12 0.141449 0.144369 (Baba)

13 0.136106 0.138701

14 0.131326 0.133652 2 R* 1 ¥  Present study
t:V=%=0in ¥* (i, I) ¥: see Eq. 2.
v )=J/T~(i=-1)=-JT-1 #: Scheil's coefficient or similar

for 0<is/, 6: Kroneker's delta
=0, for; > i: class of sphere diameter
vl D) =9 (i=%.1) r: radius of the disk
=y(i,]—-%) R: radius of the sphere
=Sl =i=%-VI=-i-%. z,X.To.T,: see Eg. 5.
for 0<isl-1, /: length of intercept contained within the sphere.
=1/2, for i=1,
=0, for i>1I.
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THICK SECTION
For the following discussion, a general equation is proposed;

n(x(i 1)) ={aoTo(i,1)t° +a ) Ty(i, 1)t ") N(X(I)) e 5)

where 2o and a, are constants; 7T,(i,/) and 7,(i,/]) are matrix coefficients; (°
is 1; ¢! is thickness of the section (#); X is a quantity of the sphere such as
R and 4zR%*; I 1is its class; x is the detection quantity with or without
modification such as [/, /%, 2» .and #nr?; i is class of z; N(X(I)) is number of
X(I)s; and n(x(i;I)) is number of =n(x(:/)) produced by all /-th spheres (all
X(I)s).

Table 2 clearly shows the difference of the conversion matrix coefficients
among various methods for determination of the sphere size distribution by
linear and "profile" analyses. The so-called linear analysis for the determi-
nation of the sphere size distribution is, generally, fit to express To(i:,])
but' not fit for 7.(i,/). 1In contrast with the so-called linear analysis, the
"profile analysis" fit for 7.(i,]) but clearly not fit for T.(i.I).

THIN SECTION

To(i,I) of "profile analysis" contains always both 7 and 7. To(i,I) of
F(R)—f(l) contains one of them. To(i,]) of the method of the present study
contains none of them.

The most fundermental To(i,]) for F(R)—f(r) has been derived by Scheil
(1931) as;

(i, 1)=VI*—(I—1)? —=JI? —?

Variants of To(i,I) such as ¢(i,/-%) and ¢(i+%,I) have been also proposed
by different stereologists. In order to find a formula to yield faithful
results, many stereologists have dealt chiefly with the problem of how to
define class limit and class parameter of i and / contained in T,(i,I) for the
conversion F(R) — f(r) by the "profile analysis". E.R. Weibel states in his
text book that none of ¢s yield faithful result but ¢(:,/—-%) is rather
faithful. ¢ for 7To(i,I) to perform F(R?)—f(r?) has same problem caused by
class definition of 7/ and :. Also for the conversion F(R)—f(l) according to
the so-called linear analysis, two different formulae* have been proposed, and
their reliabilities are comparatively discussed.

Essentially, these problems are caused by the existence of / and/or i in
the conversion coefficients. Neither / nor i is included in the T,(:{,/) deriv-
ed in this study as mentioned above. Therefore, we are free from the problems
caused by class definition of r and X, as far as the authors' method is used.

*: One of them was derived consistently by an unfolding method by Spektor in
1950. The other used a discreet method by Cahn & Fullman in 1956, and then
was convertered to an unfolding form suitable for analyzing histograms by
Suwa' in 1977. The authors believe Spektor's method will yield faithful
results in so far as the detected data are given in a form of histogram,
since a discreet method is merely an approximation as far as the data is
given by form of histogram.
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C: I just want to draw your attention to the fact thgt the
method(for section thickness = 0) was published in J. Microsc.
1983, 131, 291-310. (H. J. Gundersen)
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