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First, in this review paper, basic stereological
estimators for spatial tessellations are presented. Then
various specific tessellation models are introduced, based
upon Poisson flat processes of differing dimensions in R3
Stereological aspects of these models are considered.

INTRODUCTION

Classical stereology relates to the estimation of the
spatial structure of irregular materials, on the basis of
plane and line sections. Supposing the material to be
deterministic, sections must be taken random in a precisely
defined way, whereupon a class of stereological estimators
of tessellation characteristics emerges. Often, however,
alternative prior knowledge of the material is available,
and then a more powerful approach may be to formulate a
parametric class of homogeneous (and maybe isotropic) spatial
stochastic models for the material, based upon this knowledge:;
for example, by taking a specific parametric class of
covariance functions. In this case, sections need only be
arbitrary, i.e. chosen independently of knowledge of the
constitution of the specimen. The classic stereological
estimators extend to this case, but with differing variance
expressions. However, the more detailed and accurate the
model, the more accurate the resulting estimators may be
expected to be.
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SPATIAL TESSELLATIONS AND THEIR STEREQOLOGY

STEREOLOGY OF AGGREGATES AND TESSELLATIONS

Write X for a bounded domain of three-dimensional
euclidean space R3? , and consider a disjoint aggregate
{Xj;} (i =1,2,...) of such domains (X; N Xj = @ whenever
i#3). We say {X.,} is space-filling in “R3 if UXj = R3 .
Writing K for a convex domain, it is clear that if disjoint
{Ki} 1is space-filling in R3 , then all interfaces between pairs
of Kj are planar, so that all Kj are convex polyhedra.
Thus, writing P instead of K , we say {Pi} is a tessellation
of R3 or , alternatively, {Pj} tessellates R3 . The Pj
are the cells of the tessellation.

To be able to practice stereology, we need to precisely
define certain basic types of random plane (and line) sections

of bounded domains X in R3 . Consider the following stochastic
construction:
(1) Contain X in a sphere Q (preferably of as small
a radius as possible).
(ii) Take a uniform random (i.e. isotropic) direction u
emanating from the centre of Q .
(iii) Take a uniform random point 2z on the diameter of
Q in direction u .
(iv) Construct the plane through z orthogonal to u .
(v) If this plane intersects X , then call it T, .

If not, then repeat (i)-(iv) wuntil X is hit -
by T, . (It is now clear why Q should be chosen

small !)
T, is an IUR (isotropic uniform random) plane section of X ,
with the following key property: for Yy CXx,
Pr(T, NY # @) = M;(Y)/M(X) , (1)

where M; denotes 'mean caliper diameter'.

For T, IUR through X , the perimeter B(T, N X) of
the section is a random variable. By geometrical probability/
integral geometry, its mean value is

E{B(T, N X)} = (n/4) s(X)/M1 (X) , (2)

where S denotes surface area (Miles & Davy, 1976). (2) is
stereological in the sense that, if repeated IUR sectioning
is feasible, the spatial ratio S(X)/M;(X) may be estimated
on the basis of planar measurements.

Next consider a particle aggregate {Xj}

(i=1,...,N) C bounded domain X . Its density N, is
N/V(X) . Aggregate means are denoted by a bar, e.g.
vZs = ¥ v(xj)? S(Xi)/N . For an IUR planar section T, of
X, (1) and (2) imply

n N

E(I; Bj) = (n/4)I1 S(Xji)/M;(X) (3)

E(n) = 2} My (x,)/M, () (4)
where B. (j =1,...,n) are the perimeters of the_non-yvoid
T, NX..J 'Dividing' (3) by (4) suggests that B = z7B./n
may bel used to estimate (r/4)S/M; . 1In fact, this is

true either
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(1) in the limit of repeated IUR sections, or

(ii) for an unbounded stochastlcally homogeneous and
isotropic random aggregate in R3 , where T,
need only be arbitrary (Miles, 1978). 'Homogeneous'

and 'isotropic' here and elsewhere relate to
processes stochastically invariant under arbitrary
translations and rotations, respectively.
IUR line sections T; of X may be defined in analogous
fashion. Basic stereological estimators for IUR sections
are as follows:

plane sections line sections

E(NA) = Nv M; E(NL) = NV M2

E(C) = RK/M, E(V) = (1/4)5/M,

E(B% ; (v/4)5/M, E(_l__ V/M, (5)
E(M;?)) = My/N, E([LY]) = (3/n)v2/M2
E(R) = V/M; __

E(0) = (1/2m)v3/M; .

For further details, the reader may consult Miles (1985).
Thus the following may be estimated:

By plane or line sections: NyV, NyS, NyM,
By plane sections only: NyM,, NyK, Nyv3
By line sections only: NVGE .

Unfortunately, no single characteristic may be estimated.

Note that NyV = 1 _for a tessellation. In particular,

vZ/¥ , V3/¥ and V3/V2 may all be estimated, i.e. V and
vZ for the V-weighted aggregate dlstrlbutlon, and V for the
V2-weighted distribution. Thus, especially in the case where
alternative knowledge of the aggregate may be available,
parametric families of V distributions may be fitted to data
(Miles, 1985).

In the case of a homogeneous and isotropic random specimen,
the above estimators involving V , V2 and V have a strikingly
convenient practical form, which has been developed and described
by Gundersen & Jensen (1985).

Stereology requires that either the specimen or the sections
be isotropic. 1In case (i) above the sections are isotropic,
and in case (ii) the specimen is isotropic.
Should the random specimen be only homogeneous, then isotropic
sectioning will be necessary. Practical approximations to this
involve taking equal area plane sections with orientations
those of the faces of, for example, a regular dodecahedron.

In the case of tessellations, the interfacet structure,
i.e. the relations between neighbouring cells, is of interest.
As an example, we may observe from plane sections the
distribution of the number of planar cells having the same vertex.
Clearly, this estimates the edgelength-weighted distribution
of the number of spatial cells having the same edge.
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TESSELLATIONS FROM RANDOM PLANES

Clearly a collection of 'random' planes in R3 has the
effect of partitioning R3 into an aggregate of random convex
polyhedra. A simple case is that in which the random planes
have just three orientations - orthogonal to Ox, Oy and Oz,
their intersections with these axes being stochastic point
processes {xi}, 1{yj} and {zx}. If these processes are
independent, and eacn is homogeneous, then the resultant
tessellation is also homogeneous, but clearly not isotropic.
However, the next example is isotropic.

Specify a plane in R3 by its orientation, i.e. a unit
vector u normal to it, € some hemisphere H of directions;
and by its ¢+ perpendicular distance p from O in the
direction u . Now we can define the random plane process
Hp(2,3) as {(pi,ui)} (i=0,%1,...), where : {pj} , {u;}

are independent; {pj} are the points of a homogeneous
Poisson point process P (0,1) of intensity p on a line

(with, e.g., pg defined by |pg| < all other |pi|); and
{uj} are 1IID unlform on H . Then 1,(2,3) is homogeneous
and isotropic in R3 . [In fact, by work of Kallenberg (1977)

and others it appears that, for a plane process in R3 to be
homogeneous and isotropic, it must essentially be of 1,(2,3)

type.] A basic hitting property is that, for bounded domalns
C R3 , the number of planes of I,(2,3) hitting X has a
Poisson {pM;(X)} distribution; moreover, given that the

number of hitting planes is N , they are independent IUR
planes through X .
In fact, 1n,(2,3)_ and 1,(0,1) are examples of np(s,d),
szsson s-flats in R (0 <s<d<=), where
= 0-flat = point, R = l-flat = line, R? = 2-flat =plane,
R3 = 3-flat = 'solid',... . The intensity p is the mean
s-content of s-flat per unit d-volume (Miles, 1971, (3.19C)).
The hyperplane processes o, (d-1,d) tessellate R4 into
random convex polytopes (d 1, 2,...) .
We write P for the random tessellation determined
by 1m,(2,3) . Its facet structure is such that each face
belongs to two cells (a universal tessellation property), each
edge belongs to four cells and each vertex belongs to eight cells.
The cell volume distribution is unknown, unlike the inradius

distribution, which is exponential (2p) . Another class of
known distributions are the M;-values of the subaggregate of
cells with N, faces, which is T (N,-3,p). Various 1st

and 2nd order moments of cell characteristics, including
the first three order moments of V , are known. For further
details, see Miles (1972b).

The stereology of 1,(2,3) is very simple, since
(Miles, 1971, (3.29T))

r\ =
T, al(2,3) Trp/.}(l /2)
N
T Hp(2,3) Hp/2 (0,1) .
Anisotropic case. Taking {u;} in the above stochastic

construction of m, (2,3) as IID on H , with common
generalized (i.e., 1nclud1ng atoms) probability density b(u),
yields homogeneous but anisotropic (= not isotropic) Poisson
planes in R3 . b is its orientation density, but a more
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useful function is 1t(u) = pb(u) (so that p = T (u)du

and b(u) = t(u)/| t(u)du) . Then we write H HT(2,3)
H

and again P for the generated tessellation. Note the
'three orientations' and 'isotropic' cases are both special
cases.

The stereology becomes more interesting. Thus a line
with direction v intersects 1 (2,3) in a il (0,1),
where T p (V)
p(v) = Lium|r(wdu (v EH). (6)

Should p(v) be known (i.e., estimated with sufficient
accuracy), then (6) constitutes an integral equation for

T . Its solution appears to be an open problem. Next
consider plane sections. A plane T,(v) with normal v(€ H)

intersects HT (2,3) in a 1 (V)(l,Z) where, if (p,9)
parametrizes '3 lines in T2 T, (V) ,
L
T2(p,6;v) = I T5(u) sin?¢ d¢ (7)
o uilp,0)

where 0 < ¢ = cos_l(u.v) < m . Integration of (7) yields

M ™
J T2(p,0;v)dv = (71/2) J T3(u)du . (8)
o VL(p,9) o ul(p,9)

Should the left side of (8) be known (or estimable with
sufficient accuracy), then the right side - the integrated
great circle sections of <13 - is known, and so +t13 may be
determined by standard Radon theory. For a discussion of
other sectional aspects, see Matheron (1974). Finally, it
should be noted that (6), (7) apply more generally to the
induced orientation distribution of a homogeneous random
surface in R3 (Miles, 1972a, Section 2). Notwithstanding
the above, isotropic sectioning gives rise to the estimators
(5) of tessellation means.

Nested Poisson tessellations. An interesting variation

on the above tessellations are nested Poisson tessellations,
an example of which was introduced by Serra (1982, p.296).
Thus suppose II_ (2,3) determines P; as above. For each
cell c¢ of 1 P, , generate an (independent) realization
of N0_ (2,3) , and retain its intersection with ¢ . 1In this

way 2 we get the nest 1 ..(2,3) , which determines the
tessellation P . Tl1r%2  rhen
Tl,‘(z
(i) The cell distributions of P are the same as
T ,T2
those of P
T1+T2
(idi) If T, hn_ (2,3) =1 (1,2) (i=1,2) , then
Ti Ui
n =
T, nTl,T2(2,3) ncl'oz (1,2) .
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n-fold nests 1'[1_1 . (d-1,d) have corresponding properties.
fooer

Such nests clearlyhaven wider modelling potential than the
'straight' Poisson model.

Poisson laminae. Next consider processes of interpenetrating
laminae (thick planes) in R3 . A lamina may be specified
by its mid-plane (p,u) together with its semi-thickness w .
Thus suppose b(u) 1is replaced by a (generalized) joint
probability density b(u,w) , having marginal density b(u)
(on H) , and marginal expectation E(w) . Poisson laminae
i (2,3) are defined in the usual way, i.e. {pj} as

T (u,w) above, with {uj,wj} conforming to b(u,w) . For it,

Pr (arbitrary point of R3 1lies in no lamina)
= exp{-2pE(w)} = nuncovered fraction of R3 .

Thus, if E(w) < » , the interstices between the laminae form
a polyhedron aggregate P Remarkably, the cells of

P (u,w) have the same T(u'w)distributions as those of
i, () (Miles, 1961). Stereologically, plane and
line T sections are corresponding Poisson strip and

interval processes.

TESSELLATIONS FROM RANDOM POINTS

Voronoi tessellations. Now we consider the other main source
of specific random tessellations, viz . those determined by
the Voronoi operation on collections C of (point) particles

in R3 . Thus let C = {xj} , supposed for convenience to be
in mutual general position. Each point x € R3 has a nearest
particle, n(x) say. {y :n(y) = n(x)} is a convex

polyhedral cell, containing n(x) as nucleus. The aggregate
of such cells is the Voronoi (sometimes Dirichlet, or Thiessen)
tessellation V with respect to C . Each cell edge € three
cells of V (the edge is a portion of the 'circumline' of the
three corresponding particles), and each vertex € four cells
(being the circumcentre of the four corresponding particles).
We call such tessellations normal, since they are the ones most
frequently encountered in practice. Many mean values of U
with respect to 1_.(0,3) , the simplest particle process,

are known : polyhedron means, means for edges and planar
faces, and stereological means for plane and line sections (see
Miles, 1972b, Section 5). Since Hp(0,3) is isotropic, so too
is V with respect to it. Anisotropic tessellations result
from anisotropic C , or by affine transformation of isotropic
tessellations.

Generalized Voronoi tessellations. In fact, x above has not
only a nearest particle, but a set of n nearest particles
(n=1,2,...). {y : same set of n nearest particles as x} is

again a convex polyhedral cell. The aggregate of such cells

is the generalized Voronoi tessellation V,, with respect to C,
which is, like V = V; , normal. The planar version has been
considered in some detail by Miles (1970, Sections 7,10), Miles &
Maillardet (1982) and Maillardet (1982). One elementary property
may be noted : since there is a one-to-one correspondence between
the cells of V, and the plane faces of V ,
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Ez(V) =2 El(v)/El(Nz) . (9)

Skeletonized tessellations. Consider a convex polyhedron

P , and label its plane faces Fj (i=1,...,N2). Write
P;(F;) for the sub-polyhedron ofNI> comprising points whose
nearest face is F; . Thus P=0Uj2 Pj . The union of the
common boundaries of pairs of the Pj 1is the skeleton ot P
(Serra, 1982, p.375). Next consider a homogeneous random
tessellation P , with aggregate F of plane faces. Associate
with each F € F the polyhedron union P(F) of the two
polyhedra P'(F), P"(F) on its two

sides. The aggregate of such P(F) tessellates R3 , and
may be called the skeletonized tessellation S(P) . Property
(9) extends, on replacing 1,2 by P, S(P) respectively.
Note that the Voronoi rule 'nearest edge' applied to the edges
of P does not in general yield a polyhedral tessellation.
Note also that skeletons are based on plane bisectors of
plane-pairs, whereas {Vn} are based on plane bisectors of
point-pairs.

Delaunay tetrahedral tessellations. Each vertex of V is
vertex of four cells of V . Consider the tetrahedron formed
by the corresponding four nuclei. The aggregate of such
tetrahedra is a tessellation! - the Delaunay tessellation D
with respect to C (Rogers, 1964). (In fact D tessellates
the convex hull of C.) 07 may be regarded as dual to V

For 1n,(0,3) particles, the (ergodic) distribution of
these tetraﬁedra is known : if the four particle vertices
with respect to their circumcentre are ru;, ru,, rus and
ru, , then the joint density is

f(r;uy,uz,us,uy) « exp(-4npr3/3) r8 A(u;,u,,usz,uy) ,

where A(uj,uj,us,uy) is the volume of the tetrahedron with
vertices uj,u,,uz,u, (Miles, 1974). Stereologically, plane
sections of D0 are unions of triangles and convex
quadrilaterals. Similarly, a T3 section of D in R* is

a tessellation comprising 4- and 5-faced polyhedra. Planar
sections of the latter are unions of 3-, 4- and 5-gons.

Sectional Voronoi tessellations. Let us write V(d)

for V in RA with respect to M,(0,d) (d=1,2,...).

First note T, N V(3) 1is a planar tessellation topologically
similar to V(2) . Similarly

Ty N V(4) = spatial normal tessellation V(3,4)

T3 N V(d) = spatial normal tessellation V(3,d) .
{V(3,4)} (d=3,4,...) constitute a parametric class of random
tessellations of R3 , with V = V(3) = V(3,3) . By
construction, they have the stereological property

Tt Nnv(s,d) = V(t,qd) (t < s) .
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It may be shown that the mean number of plane facets, E(N3),
takes the value 15.54 for V(3,3) and -»13.39 for

V(3,d) as d-» (Miles, 1972b, 1984). Hence, since empiric
studies of hormal tessellations occurring in nature commonly
possess values of E(N,) in the range 13 to 15, {v(3,a)}

may offer excellent models of such phenomena. In fact,

the stochastic construction of U(3,d)

may be restricted to four dimensions, by the following lemma
(Miles, 1972b). V(3,d) is stochastically equivalent to the
intersection of the 3-flat x,=0 in R* with the V(4)

in RY with respect to an inhomogeneous Poisson particle
process with non-constant intensity p(X1,X2,X3,Xy) «x,8-4

Tanemura & Hasegawa's model. For many observed tessellations,
the cells of the above Voronoi models are too variable to

allow good modelling. One solution is to take the underlying
particle process in R3 to be more regular than n,(0,3) ,
e.g. as a soft- or hard-core particle process. An alternative
approach, carried out in the plane by Tanemura & Hasegawa (1980),
is to begin with the standard Voronoi; to replace the nuclei
by new nuclei located at the centroids of the vertices of each
cell; to form a new Voronoi with respect to these new nuclei;
and to sequentially repeat this procedure. The procedure tends
to equalize the sizes of neighbouring cells, and in the plane
Tanemura & Hasegawa have shown that in the limit, after

several hundred repetitions, random tessellations of remarkably
equi-sized polygonal cells result. The limits show no overall
favoured orientations - only locally favoured orientations,
unlike hexagonal honeycomb tessellations. It is to be hoped
that sometime the procedure will be carried out in R3 .

TESSELLATIONS FROM RANDOM LINES

Since the above tessellations stem from bases 1,(2,3)
and Hp(0,3) , it may be asked whether further tessellations
stem from Hp(l,3) - 'random lines in space'. For it, the
standard Voronoi construction, by 'nearest line', partitions
R3 into space-filling tubes surrounding the lines of Hp(1,3),
with piecewise hyperboloid boundaries. The mean cross-sectional
areas of these tubes is 1/p . Conventional (polyhedral)
tessellations may be obtained by constructing a H)(O,l) of
collinear particles on each line of 1,(1,3), and " forming
the usual V with respect to the resulting totality
of particles.
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3-5

C: In the first part of your presentation, i.e. estimations of
stereological quantities of tessellations does in fact not rely
on convex cells in the tessellations. (H. J. Gundersen)
Q: I do not really understand the significance of voronoi-
tessellations in stereological applications. Could you give some
comments on its possible usefulness? (G. Bernroider)
A: 3-dimensional sectors of Sdimensional voronoi tessellations

may well offer very good statistiscal models for plant cell
structure, metal granular structure, etc. (see my paper)

The value of such statistical models in stereology is that a
prior information about the material being considered may be
incorporated, with a resulting substantial improvement in the
stereological estimates finally obtained.
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