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Most stereological works seem to aim at obtaining informa-
tions about the individual particle objects which are distributed
in the space of a specimen. This paper, on the other hand, con-
cerns about the radial distribution function of a set of
particles. This function characterises the spatial structure of
a particle system. Some empirical relationships of radial dis-
tribution functions in three-dimensional space to those in two-
dimensional section are given for hard-sphere systems. Then, the
stereological formulae for radial distribution function given by
Hanisch & Stoyan(1981) are examined for hard-sphere systems. The
result of comparison indicates some serious discrepancies occur
when hard-sphere systems with varying radii are considered.

INTRODUCTION

It seems most works on stereology have been concentrated on
the estimation of parameters which characterize the size and
shape of individual objects (particles) ([for example, see
Weibel(1980)1. But it will also be important to develop a scheme
which allows us to infer certain parameters of the connectivity
between particles. Usually, the connectivity is represented by
the term "spatial structure".

Let us consider the case, for example, where two kinds of
hard-sphere (non-overlapping sphere) are distributed in a
specimen. I1f we have obtained informations about the individual
spheres, such as radii and concentration, could we infer about
the inner structure of the system? We have no sufficient infor-
mation about such a structure yet. In order to obtain such an
information, we must measure the interrelationship between par-
ticle positions.

For that purpose, there is a quantity called "radial dis-
tribution function" (hereafter, we abbreviate it by RDF) which
is one of the descriptive measures of spatial structure. This

function is wusually represented as g(r), and is defined in the
following manner.
Let DV be the number density (this is usually called numeri-

cal density in the standard textbook of stereology) in three-
dimensional space. This is equivalent to the mean number of
particles per unit volume. Let DVKv(r) represent the mean number
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Stereology of the Radial Distribution Function

of particles in a sphere of radius r whose center is at an ar-
bitrary particle. Then the radial distribution function in
three-dimensional space, gv(r) is given by the relation:

1 de(r)
(r) = . (@D]
4nr2 dr

Iy

The two-dimensional radial distribution function, gA(r), is

similarly defined 1if we properly change the definition of quan-
tities which appeared in 3-D case to fit 2-D case. That is, let
DA be the number density in 2-D space, and DAKA(r) be the mean

number of particles in a circle of radius r whose center is at
any particle. Then, gA(r) is given by

1 dKA(r)

2nr dr

(r) = (2)

I

The function gv(r) is usually used in statistical physics in or-

der to represent the structure of atomic systems such as liquid
phase (see, for instance, Rice & Gray:1965). Moreover, the func-
tion Kv(r) for a certain system can be experimentally obtained

from X-ray diffraction, for example. The functions gA(r), KA(r)

are used 1in spatial statistics for the characterization of some
spatial data such as distribution pattern of a certain kind of
trees (see, for example, Diggle: 1983).

It will be interesting to note that for ideal gases, i.e.,
for completely random configurations of particles, gv(r) = gA(r)

= 1 holds for any value of r. Deviations from gv[A](r) = 1 rep-

resent the existence of correlations between particles at that
distance r. For example, if g(r) > 1, then the correlation is
positive, whereas if g(r) < 1, the correlation is negative.

STEREOLOGICAL RELATIONSHIP BETWEEN gv(r) AND gp(r)

Hanisch & Stoyan (1981) have presented an integral equation
which connects gv(r) and gA(r) in the case of planar and thin

section. Here, gA(r) is understood to be the RDF for the planar
section of a specimen whose RDF is gv(r). The integral equation
is given by

0

g,(r) = 1 I f(u) g,(Vrz+ uz) du, (3)
4[E(£)12 ‘¢

where f(u) is given by the following integral

® Ju - vi u+ v
[1 - RV(—_—i___)] [ - Rv( 2

ey

ftu) = 2 )1 dv. (4)
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Here, tha) is the cumulative distribution function of radius &

of spheres and EIL€] in eq.(3) is the expected value of £.
Note that (3) 1is the equation for the planar thin section
(thickness of section t = 0).

RADIAL DISTRIBUTION FUNCTION FOR HARD-SPHERE SYSTEMS

Integral equation (3) has been derived under the following
assumption (Hanisch & Stoyan: 1981): the centres Xn of spheres

with independently identically distributed radii En (whose dis-

tribution function is RV(E) ) form a second-order point process

of 3-D space strictly stationary under translations and
rotations.

Hanisch (1983) used this equation for non-overlapping sphere
(i.e. hard-sphere) systems. He applied it to both of fixed
radius and varying radii systems.

Let us apply eq.(3) to the following two species hard-sphere
system. Let the radii of the sphere of species 1 and species 2 be
roand ary (0 < g < 1), respectively, and let the respective cor-

responding population rates be pand 1 - p ( 0 < p< 1 ). Figure
1 shows the distribution function Rv(r) of radius for this

system. For this system, we can obtain an explicit form of the
function f(u). Table 1 shows its result.

Table 1. The explicit form of f(u) for the two species hard-core
system whose distribution of radius is given in Figure 1.

(i) 0 Sq<1/38
0 S u¢< 2qr0 2[2{q + pP2(1-q)}r - (2p2 - 2p + 1)ul
2qr0 S u< (l—q)r0 2[2p(1 + q -p9)ry - p(2 - plul
2 -
(l-q)ros u < 2r0 2p (2r0 u)
(ii) 1/73 s 9 < 1
0 Suc( (l-q)r0 202{q + p2(1-9)}r - (2p2 - 2p + 1)ul
(l-q)ros u < 2qr0 202{q + p(l—q)}ro- ul
2qr0 S u< 2r0 202{(1+q) - p2q}r0- (2 - p2) ul
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From the equation of Table 1, we obtain

f(u) = 2(2r0 - u)

as a special case of single species system by putting q = 1.
This derives eq.(25) of Hanisch (1983) as a fixed radius non-
overlapping case.

SIMULATION STUDY

We have done a computer simulation for obtaining some
samples of hard-sphere systems. The sample was prepared as a
random sequential packing of spheres whose Rv(r) is as given in

Fig. 1. The explicit procedure for random sequential packing of
two species hard-spheres in a finite region is stepwise shown as
follows:

(i) The first sphere 1is put into the region uniformly at
random and 1its radius 1is <chosen to be r0 or qro with

probability p or 1-p, respectively.

(ii) The radius of the n-th (n 2 2) sphere is chosen as
similar manner in (i). The centre of the sphere is chosen in
the region uniformly at random as a trial position. But if

the trial sphere overlaps any of the formerly settled n - 1
spheres, the selection of centre is repeated. Otherwise, the
centre is fixed as the position of the n-th sphere.

(iii) The procedure (ii) is repeated until a packing of a
specified number of spheres is attained.

Rv(r)
A R ceeman-
1-pf-e-nnne- !
0 :
0 qr, Iy r

Fig. 1. The distribution function Rv(r) of radii for two-species
case.
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Fig. 2. The RDF qv(r) for hard-sphere systems : (a) p=49q =1,

mean number of spheres = 1000.3, mean volume fraction =
0.362; (b)) p = q 1/2, mean number of spheres = 1501.6,
mean volume fraction 0.339.
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The simulations were done for three cases: (a) a single
species case (p = q = 1) ;(b) two species case [I] (p = q = 1/2)
sy (¢c) two species case [II1 (p = q = 1/4). For each case,
samples of 100 packing patterns were generated and gv(r) was com-

puted from the patterns [see Fig. 2 (a), (b) for the estimated
gv(r) 1. Then, we evaluated gA(r) by taking several random sec-

tions from each sample pattern. A sample of a random section for
the case p=1/4 and q=1/4 is given in Fig. 2.
At the same time, we also evaluated gA(r) from the eq. (3)

where gv(r) was obtained from the simulation and where f(u) of
Table 1 was used. Let us denote gA(r) evaluated from simulation

by §A(r) and the one from eq. (3) by gA(r). The comparison of
§A(r) and gA(r) is made in Figs. 4 and 5. Note that for the case

(a), §A(r) and ;A(r) coincide well for all values of r: whereas

for the case (b), they deviate with each other for almost values
of r, although the positions of peaks of the graph well coincide.

Deviation of
(c).

gA(r) from §A(r) became much larger for the case

Fig. 3. A sample of random cross section of two-species
hard-sphere system (p = q = 1/4). The circles with solid
line 1indicates crossing spheres whose centres are on one
side of the section plane and the circles with broken lines
represent those ones whose centres are on the other side of
the plane.

162



Stereology of the Radial Distribution Function

gA(,.) (XY YY) g:‘(,-}
. ~
00000 gA(r)
2+ .
)
°
°%
o
e %
o
L o T e~ —— 3000y gv e
° M X R
°
°
¢
y
0 -!. 1 1 1
0 1 2 rr,
Fig. 4. Comparison between §A(r) and ;A(r) for the case (a).
1.5 b
°
°
gA(r) ©e
o
o‘.
% .o%.
O Y - J L] _
1-0 scbﬁ' °o.0°'°'.; (P XXX X
° oooo°°° 9000000000
°
o
° -
o (XX XY} gA(r)
°
05 é’ 0oo0o0o00 §A(r)
o°.
)
®
4
s
@
0.0 L_oe® L ! 1
2 rr, 3

0 1
Fig. 5. Comparison between §A(r) and gA(r) for the case (b).
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DISCUSSION

The above results indicate that the eq. (3) presented by
Hanisch & Stoyan (1981) holds for the hard-sphere system with
fixed radius but does not hold for those system with varying
radii.

The reason seems to be originated from the assumption which
was mentioned above; that 1is, the assumption of independently

identically distributed radii. When the number of radius of
spheres is only one, this assumption does not affect the posi-
tions of spheres. However, when the number of radius is more

than one, the radius of certain sphere at certain position cannot
be replaced by another value independently with positions of
other spheres according to the non-overlapping property of hard-
sphere system. This turns out that in the equation (3), the
factor f(u) which contains Rv(r) and those gv(r) which contains

sphere positions cannot generally be separated. It will be
easily seen that +the same is true also for the case where the
radii are continuously distributed.

The derivation of general formula which is useful for the
case with varying radii seems very difficult. But some empirical
relations derived from simulation studies would help to develop
such formula and also to develop stereology of particle
correlations.
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3-6
C: I would first like to point out that there is a large 3-D
cordinate data set in existence collected on the centroids of
osteocyte lacunae collected using Professor Alan Boyde's TSRLM in
collaboration with Adrian Baddeley.

On this overhead slide is shown the X(t) function in 3-D.

The red line shows the Poisson (i.e. random) distribution. The
black lines show the data from several replicates with the 957
confidence intervals in blue. Notice that the data falls below
the Poisson at about 25 um separation (remember in 3-D). This

indicates a hand core paching process. This is the only large 3-
D cordinate data set in existence, to my knowledge. It should be
of some interest to all this morning's speakers. (V. Howard)

165



