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The classical stereological quantities Ny, Ly, Sy, Vy and others are
mean values not giving an insight in the dependencies, orientations and
further kinds of the inner structure. To describe and analyse the inner
order the covariance, the reduced second moment function (K-function), the

pair distribution function (pair correlation function), the radial
distribution function, the integrated radial distribution function, and the
second-order product density are defined and interpreted. The

stereological determination of the pair distribution function for point and
fibre systems is demonstrated. Information on a suitable software-package
is given.

INTRODUCTION

To quantify and anlyse correlations, clustering, attrac-
tion, repulsion of the elements within random structures such
as point processes, fibre, surface, and volume processes some
quantities and functions are useful: covariance, K-function,
pair distribution or pair correlation function, radial distri-
bution function, integrated radial distribution function,
second order density function, and others. Some of them have
been introduced and used in specific scientific areas over
years. For example, the radial distribution function is in
use in solid state physics with X-ray scattering technique.

In last years such characteristics have been introduced in
stereology with applications in material and 1life science.
Formulas, equations, estimators have been given to compute them
from planar and thin sections of the structures under study.
Computer software for them is available. Furthermore, they are
mathematically rigorous defined, studied, and in part genera-
lized to other cases such as anisotropic structures.

HEURISTICAL APPROACH

For any random structure ¢, in particular in three dimen-
sions, the covariance cov(¢(Vi), ¢(V,)) is, of course, a suita-
ble measure for possible correlations. Here V, and V; denote
two volumina in the three dimensional space and the random
variables ¢(V,) and ¢(V,) are the random number of points in Wi
and V, , respectively, if ¢ is a random point. structure, the
random total fibre lengths in V, and V., in case ¢ is a random
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Probabilistic characterization of the inner order of random structures

fibrous structure, and analoguously for random surface and body
systems, respectively..But under certain conditions there exist
real-valued functions only of one real variable which are sim-
pler to handle with, and giving complete or nearly complete
insight in the inner order of the structure.

Let be given a spatial point struecture, randomly position-
ned, denoted by ¢, and assumed to be homogeneous and isotropic.
An intuitive approach to the pair distribution function is the
following. Consider two infinitesimal small spheres AV: and
AV, the centres of which have a distance r. Then $(AV,) and

Fig. 1. Random point structure with samll spheres:

¢(AV,) are the random numbers of points in AV,, AV, , respec-
tively. Because ¢ is homogeneous for the mathematical expec-
tation E¢(AVy) = Ny, *4&vy , i=1,2, holds, where Ny is the volume
density of ¢, i.e. the mean number of points in the unit cube.
Then we consider the ratio

E($(AV,) - (AV2)) _ E(¢(AV,) ¢ (AV3))

E(6 (V1)) "E(3(AV,)) ~  NL-AV,-AV, gv (r)
Because of the assumptions the ratio is only a function of the
distance r and is denoted by gy (r). It is said to be the pair
distribution function of ¢ (because we considered a pair of
spheres and centres, respectively!).

If the random numbers ¢(AV;) and ¢(AV. ) are independent
then we have

(1)

E(6(AV1) =9 (AV2)) = E(¢(AVy)*E(¢(AV3)) (2)

and consequently gy (r)=1 for all rz0. Thus for a homogeneous
spatial Poisson point process we have a pair distribution
function constantly equal to one. In general, gy (r) is a non
linear function of r, and values of the pair distribution
function greater than one indicate attraction of possible
particles at the points, while values of the pair-distribution
function smaller than one indicate repulsion. Peaks of the
function reflect preferred distances between the points, and
minima give rarely occuring distances. As r tends to zero then
the pair distribution function converges to a value ¢, 0&scseo,
As r tends to infinity then the pair distribution function
under weak assumptions tends to one, and the rate of conver-
gence gives information on the degree of randomness of the
given point structure in comparison with the complete ran-
domness of the Poisson point structure.
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Fig. 2. Examples of the pair distribution function

STRONG DEFINITIONS

Let @° be the o-field of Borel sets of the three-
dimensional Euclidean space, and N is the space of all locally
finite counting measures ¢ on R®. ¥/ is the minimal o-field of
subsets on N which makes the function ¢->¢(B) measurable for all
bounded BE®%. A random point process ¢ is a probability space
[N, #, P] with the probability distribution P on <#. Thus, for
a subset BE®3, ¢(B) is the random number of points of ¢ in B, and
P(¢(B)=k) is the probablllty that there are k points of ¢ in B.

The measure Tfp on the product o-field @® N defined by

%’é (BxY) = JNJBle-éx)mdx)P(dm, BEB®, YEN, (3)

is said to be the reduced Campbell measure of or ¢ or P, re-
spectively. Here §x equals one for x€Y, and zero otherwise.

For Y=N the reduced Campbell measure gives a new measure
on B3:

Ap (B) = @} (BxY) = J #(B)P(de¢), BESB®. (4)

N
Ap is called the 1ntens:.ty measure of P. Obviously is [p(B)=
E®(B). 1In case ¢ is the non—homogeneous Poisson pcunt process
then the intensity measure is well-known. If ¢ is stationary

(homogeneous), i.e. invariant with respect to translations,
then it is

AP (B) = >\P.\)(B)l BE@BI (5)

where Vv is the Lebesgue measure on @*® and ) is a constant,
called the intensity of ¢. It is

Ap = hp(L0,11%) = Eo¢([0,11%), (6)
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in other words Xp equals Ny which is the common notation in
stereology. If for a not necessarily stationary point process
the intensity measure is 0-finite then for Ap-almost all X ER’
there exist unique probability distributions P} on ¥ with

%L (BxY) = J PL(Y) MAp(dx), BEB®, YEM (7)
B

The distribution P} is said to be the reduced Palm distribution
of the random point process with respect to the point x. It is
a generalization of the Palm-Khintchine function for stationary
point processes on R! and can be interpreted as the conditional
probability distribution of the point process under the condi-
tion that at x there is a point of the point process (which
condition has the probability zero; therefore the relatively
complicated definition of the reduced Palm distribution is
necessary). The point x by itself is not counted in the event
Y.

Now, let us assume that the random point process ¢ is
stationary and isotropic, i.e. invariant under translations and
rotations. The function Ky (r) defined by

Ky (r) = XL J ¢(b(0,r))Pj (d9) (8)
P JN
is said to be the reduced second moment function, in short also
K-function. Here b(0,r) is a sphere with the origin 0 of R® as
centre and radius r. With the help of the interpretation of Py
it 1is obvious that Ap°*K(r) can be interpreted as the mean
number of points in a sphere with radius r centred at the
origin 0 under the condition that at 0 there is a point of the
point process, which is not counted in ¢(b(0,r)). The K-
function is analytically well-known for important models of
point structures.
Then the pair distribution function (or pair correlation
function) is defined by the first derivative of the reduced
second moment function, in case it exists:

1 de(r) ,
4mr? dr

gy(r) = rz0. (9)

Although it is called pair ‘distribution function' it is, of
course, not a distribution function in the usual sense of pro-
bability theory; more likely it is a density function.

The second-order product density (also named second order
density function)

oy (r) = A3 g, (x), (10)
the radial. distribution function

R(r) = Ap-d4mr? g9, (x), (11)
and the integrated radial distribution function

G(r) = Ap Lr R(x)dx (12)

are also in use.
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Edge-corrected unbiased estimators of the K-function have
been constructed and studied by Ripley, Ohser, Ohser & Stoyan,
see also Diggle (1983). To estimate the pair distribution
function one can use general density estimators, published for
example by Jolivet.

STEREOLOGY FOR THE PAIR DISTRIBUTION FUNCTION OF
A POINT STRUCTURE

We consider centres x, of random spheres with independent
identically distributed radii ry,, with distribution function Ry
which are assumed to be independent on the randomly positioned
centres x,. Denote by g;, the pair distribution function of the
point structure of the xn which is assumed to be homogeneous
and isotropic. We'ld like to estimate gy using information of
a planar section, see also Kbénig et al (1983). In the section
plane there is. observed a random structure of circles with
centres y, and random radii ra,n with distribution function "Rp
and pair distribution function g, for the y, . Then the pair
distribution function gy is a solution of the integral equation

2R
5, (5) = ghr . [ 2R0g, (FTETax 13)

in case of constant radii xr; , =R, and of the integral equation
2 [ee]

g, () =2 L (x + £)exp (-bx) g, (/ri+x?)dx (14)

in case of exponentially distributed (with parameter b) radii
v,n + See Hanisch & Stoyan (1981), Hanisch (1983), Kénig &
Stoyan (1986). For an arbitrary distribution function Ry the
integral equation for gy is given in Hanisch (1983) see also
Konig & Stoyan (1986), where one can find also analytical
methods for solving the integral equations. In practical ap-
plications R; in general is unknown. Therefore another inte-
gral equation has been given and analytical procedurs have been
discussed to get gy without using Ry but only quantities of the
section plane, see Kdnig & Stoyan (1986).

The stereological determination of an estimator of the
pair distribution function g, ©of the centres of sinter metall
spheres by a planar section of a sample of sinter metall is
published in Hanisch et al. (1985) while a discussion of this
example for a thin section of the sphere system can be found in
Konig & Stoyan (1986).

Integral equations for the pair distribution function gvof
centres of arbitrary convex isotropic particles instead of
spheres can be derived analoguously. It is our conjecture that
in most cases these integral equations are quite "close" to
those for gy in the case of spheres.

On the other side only linear sections of the spheres
might be given. Denoting by g; the pair distribution function
of the squared half on the intersection chords the following
integral equation for g, holds
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fe o]

g, (r) = J J hL(u,v)gv(/r2+u2+v2)dudv, (15)
0 0

where hL(u,v) depends on the distribution function of the half

intersection chord lengths.

Finally, there is also a relationship between the scatter-
ing analysis of a random point structure and the pair distribu-
tion function. If one considers the scattering of X-rays by
matter as in solid state physics or materials science then one
gets the following equation in the case of a stationary and
isotropic spatial point process with intensity 2\

1
ZHZXI
where I(h) is the scattering intensity function describing the
distance proportions between the atoms, and h=|h| with h=(h,,
h2, hs) being the scattering vector. Thus, the pair distribu-
tion function and the intensity function are related to each
other by Fourier transform. If, for example, the stationary
Poisson process is given, then gyl(r)=1 and I(h)=1.

Also the orientation analysis of planar point structures
can be done with the help of a generalized K-function which
depends on r and an angle, suitable defined distrubution
functions for the orientations and by the rose of orientations,
see for example, Ohser & Stoyan (1981). That means that the K-
function can also be used to quantify the degree of anisotropy
in the case of anisotropic point patterns and the detection of
inner orientations in the point pattern in the case of isotropy
if, for example, the points are positionned on an isotropic
system of random fibres.

g, (r) = 1 + J h(I(h)-1)sin(hr)dh, (16)
0

A SOFTWARE - PACKAGE

For practical use in particular in materials science we
have developped a software-package, named AMBA/R-TECH, for the
image processing system A6471 produced by the company "ROBOTO-

RON" (G.D.R.). It has the following programs for the second
order analysis of point structures:
* PDF It computes unbiased estimators @A of the pair

distribution function of planar point systems (for
example obtained by sectioning)

* STEREO A Program to get the pair distribution function g,
for the three-dimensional point structure by solving
the suitable integral equation, if 9, for the plane

is given.

*+ REDU To get estimators for the reduced second moment
function K(r)

« COV 1,2,3 Different estimators for the covariance based

upon Poisson point processes, lattice processes and
further test systems, respectively

* ORIENT Orientation analysis of planar point structures with
the help of edge-corrected estimators, based upon the
generalized reduced second moment function.

These programs have been used for applications in materials and

life science and the results are very good.
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PAIR DISTRIBUTION FUNCTION AND ITS STEREOLOGY FOR
SPATIAL FIBRE STRUCTURES

Let F bé a random fibrous structure as, for example,
fibres in glass, paper and further material, dislocation lines
in crystalline matter_before and after hot-compression, nerves,
central lines of capillaries. Mathematically, we consider a
random fibre system to be a random one-dimensional closed set
in the three-dimensional space. Then F can be described by a
uniquely determined random measure ¢. For a subset B g R the
random variable ¢(B) is the random total length of fibre pieces
of F contained in B. We assume stationarity and isotropy and
consider two infinitesimal small volumina AV: and AV, with the
random total fibre lengths ¢(AV.) and ¢(AV2) of F in these
volumina, see Fig. 3.

v

Fig. 3. Random fibre structure with small volumina

Then the ratio (1) is the pair distribution function gy (r) of
the random fibre structure F. 1In a strong definition it can be
given analoguously to formula (9) by

_ ~.dK(r)
gv(r) = C =37 (17)

where K(r) is a suitable defined reduced second moment func-
tion. Not going into mathematical details we can interpret
LyK(r) as the mean total length of the fibre pieces in a sphere
b(x,r) where x is a randomly chosen fibre point and L; is the
mean total length of the fibre pieces per unit volume, i.e. the
length density in space.

The stereological problem 1is to estimate g, for the
spatial random fibre structure using only quantities of planar
or thin section of the fibre system F. A procedure for planar
section has been given in Hanisch et al (1985) where also a
sample of capillaries in human brain is studied. Different
estimators in the case of planar and thin sections can also be
found in Kdnig & Stoyan (1986).

For an object volume V of a crystal foile with thickness 4
and an arbitrarily chosen projection plane which can be realiz-
ed, for example, by transmission electron microscope images
we'ld like to get the pair distribution function gy (r) of a
three-dimensional dislocation configuration in crystals via the
pair distribution function g, (r) of the fibre projection lines
(which is a stationary and isotropic random fibre system in the
two-dimensional space, i.e. the plane) on projection plane.
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Then the pair distribution function gy (r) is approximately
(namely under the condition that the directions of the fibres
in two arbitrary points of the fibre system are independent)
given by the following integral equation

d
g,(x) =-§T J (d-x) gy (Vri+x®)dx , (18)
0

where x is a coordinate perpendicular to the foil plane. To
solve this equation one needs an estimator for g, , see Stoyan
(1981) and Kénig & Stoyan (1986) where different methods have
been given. The difficulty is that the point system of inter-
section points of a fibre system in the plane does not contain
sufficient information to determine the pair distribution
function. Either approximations are possible for not too small
r or in addition to the intersection points the angles under
which the fibres intersect the plane of intersection have to be
measured, see Konig & Stoyan (1986). In that case exact so-
lutions are possible.

The orientation analysis and the scattering analysis of
systems of fibres are possible too but need more detailed study
than in the case of point processes.
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