Science on Form: Proceedings of the First International Symposium for Science on Form,
General Editor: S. Ishizaka, Editors: Y. Kato, R. Takaki, and J. Toriwaki, 183-189.
Copyright © 1986 by KTK Scientific Publishers, Tokyo.

A Stereological Study on Crack Geometry of Discontinuous Rock Masses
Masanobu Oda

Department of Foundation Engineering, Faculty of Engineering, Saitama University,
Urawa, Saitama 338, Japan

Keywords: anisotropy, crack geometry, rock mechanics, stereology, tensor

Crack geometry, which is closely related to the mechanical anisotropy of
discontinuous materials like rocks and rock masses, can be concisely expressed
by a tensor (called the crack tensor) introduced by Oda (1982). In this paper,
an actual rock mass (moderately jointed granite) is studied to see if the
crack tensor can be actually determined in situ. It is proved that stereology,
based on geometrical statistics, provides a sound basis for determining the
crack tensor.

INTRODUCTION

Rock masses are commonly treated as isotropic solids in the conventional
analyses of rock mechanics. According to the comprehensive review by Gerrard
(1977), however, geological material is seldom isotropic. Granite, for
example, is not an exception in spite of the isotropic appearance. In fact,
the preferred orientation of discontinuities (called cracks) such as
microcracks, fissures and joints is universally observed in granite, and it is
believed to be one of the major sources controlling the anisotropic,
mechanical properties. It is clear that crack geometry (density, size and
orientation of cracks) must be considered first when rock masses are treated
as anisotropic solids. Oda (1982 & 1984) has introduced a tensor (called the
crack tensor) to give a quantitative definition for the crack geometry of dis-
continuous rock masses. The present purpose is to show that the crack tensor
can be actually determined in situ on the basis of stereological
consideration.

CRACK TENSOR

Here, ''crack geometry" is used to represent a concept concerned with
density, size and orientation of related cracks.
1) Density of cracks: If there are m V] cracks in a statistically homogeneous
body of volume V, the crack density p is defined as

o=V /v (1)

2) Size of cracks: For simplicity, a crack having area S is replaced by an
equivalent circle with a diameter r (i.e., r=2/S/m). ( This is not always a
necessary assumption. If the shape of cracks is already known, the typical
dimension is used instead of r.) The distribution of crack sizes is then given
by a density function f(r) of diameters. It must satisfy

fgm f(r)dr = I (2)

183



STEREOLOGICAL STUDY ON CRACK GEOMETRY

where r _is the maximum size of diameters. n(+4
3) Orientation of cracks: Orientation of a crack

is indicated by two unit vectors, n[+4 and n[ -] ,

normal to the major principal plane (Flg. 1).

(Note that nl+] is parallel, but opposite, to A}_l
Hereafter, \h stands for both n[+i and n[ ].) A

density function E(n,r) is used to represent the
statistical dlstrlbutlon of n. It also satisfies

fgm fQE(g,r)der =1 (3)

Fig.l1 Orientation of a
crack

where  is a solid angle corresponding to the
entire surface of a unit sphere. Here, E(Q,r) is symmetric in the sense of
E(n,r)=E(-n,r), and it is written as E(n)f(r) if n and r are statistically
iﬁaépendeng. -

A tensor F is introduced to give a mathematical definition for the crack
geometry in such a manner that all these elements are included (0da: 1982 &
1984).

F = lp_ Tm fﬂ ®p® . - DE(n,r)dedr (4)

where ® stands for tensor product and the number of n designates the rank of
the tensor.

The reasons that the crack tensor has been accepted as a representative
measure of the crack geometry are summarized below:
1) Definite mathematical meaning: E}is a dimensionless tensor, with non-zero

components F ... g (i,j,«'-,k=1,2,3) only when the rank (=the number of
subscrlpts of r. k is even. The components are symmetric in the sense that
Fiy~ . # P . A contraction with respect to any pair of subscripts

r‘educes 1ts rank by 2. The zero-, second- and fourth- rank tensors, for
example, are given below by using a fixed orthogonal Cartesian coordinate:

Zero-rank : - 0 frm .3
ero-ran Fo 2 fo r f(r)dr
_ ) _ TP rrp 3
Second-rank: Fij == fo er ninjE(p,r)der (5)
. =P [Ty 3
Fourth-rank: Fijkl 2 j; ‘er ninjnknlh(n,r)dﬂdr

(iyjrk»l=lr2)3)

where n; is a direction cosine of n with respect to the reference axis X

2) Close relation to crack geometry On the assumption that crack aperture
increases in proportion to crack size, Oda (1982) has proved that the scalar
Fo 1is equivalent to the porosity associated with cracks. Since F;i is a
symmetric second-rank tensor just like a stress tensor, one can always find
three orthogonal principal axes even though non- orthogonal crack sets are
concerned.

3) Close relation to hydro-mechanical properties: In the analyses of hydro-
mechanical behaviors of rock masses, engineers must commonly deal with several
tensor quantities such as stress and strain. It can be said, therefore, that
if the concept of the crack geometry is quantified by a tensor, it is easily
taken into account in the analyses. For example, considering elasticity for
discontinuous rock masses, Oda & Maeshibu (1984) have formulated an elastic
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constitutive equation. Furthermore, the second-rank crack tensor plays an
important role when a permeability tensor for jointed rock masses is consi-
dered (Oda: 1985).

STEREOLOGICAL STUDY ON CRACK TENSOR

In order to complete the purpose of the paper, the next step is to show
the detailed procedure which makes it possible to determine actually the
tensor on the basis of field observations. To this end, one assumption is
adopted here. That is, the random variables n and r are statistically indepen-
dent with one another. Statistically, it means

E(n,r) = E(n)£(r) (6)

where E(n) and f(r) are the density functions of n and r respectively. If
Eq.(6) cannot be accepted, cracks must be classified into a few homogeneous
groups in each of which Eq.(6) is acceptable. In such a case, the individual
crack tensors are considered first, and they are summed up afterward.
Orientation of cracks is commonly represented by contour lines of n on
Schmidt's equal area net. Each contour line is labeled by the percentage of
concentration of n per 1% area (e.g., Turner and Weiss: 1963). It is easy to
prove that the percentage of each contour line has the same meaning as the
contour of E(Q) if it is divided by 4w (0da:1985). Accordingly, the conven-
tional field survey supplies the density function E(g). Great care must be
paid, of course, not to be biased when cracks are sampled. On the contrary,
it is very difficult to obtain reliable data on the density function f(r) and
the crack density p .
Using Eq.(6) in Eq.(5), then the crack tensor becomes
_ TP [r 3 . n) ao
Fij...k = —Z:fom r f(r)dr./'gninj n, E(n) o

where

Nij.. .k = jbninj"'nkE(Q)dQ (8)

is a symmetric tensor calculated from the i
density function E(n) only, and

<rn> = ff)m rnf(r)dr (9)

«— scanline

b=

is an n-th moment of r.

To deal with Eq.(7) further, a straight
scanline ab (length h) is set in a rock mass
as being parallel to a unit vector q (Fig.2).
A column with the following characters is
considered: The central axis coincides with
the scanline. The upper and 1lower planes q
consist of (p,r)-cracks so that the cross- L::‘

sectional area equals (l/4)r2|n q1 (=the area
of an (n r)-crack prOJected on the plane
perpendlcular to q). It is easily seen that
any (Eﬁr)—cracks"hust cross the scanline if
the centers are placed Jjust inside the Fig.2 Column parallel to a
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column.

The length h of the scanline is so long that there are many cracks inside
the volume V . Note that multiplying the volume by »p yields the total
number of the cracks whose centers are located inside the column:

oV = ”—ghrzlg.gl- (10)

If pV is_further multiplied by the rate of (E,r)—cracks, it becomes the
number dNL9) of (n,r)-cracks whose centers are located inside the volume;

2in.qI2E(n) £ (r) ddr (1)

m
aw (V= Tonr
Of course, dN[ql corresponds to the number of (Q,r)—cracks crossed by the
scanline. In order to count all cracks crossed by the scanline, Eq.(1l) must
be integrated over /2 and O<r=<r, with the following result:

(a) N
N_ 2. 76 (m .ql 2E (n) dQ
— = T [t rifmar fo,,in.dl2E(n
(12)
= %<r2> <in.q!>
where
<lin.ql> = fglg.glE(g)dQ (13)

is a scalar calculated from the density function E(n). Here, N[ql/ h is the
number of cracks crossed by the unit length of the scanline in the direction
of q, and <in.qi>is. a correction factor with respect to the selected direc-
tionq. That is, N / h divided by <In.q|>must be constant irrespective of
the direction q. ~r

Actual cTacks are observed as trace lines on cliffs or excavated walls.
Let ¢ (t) be a density function for the distribution of trace lengths t. The
stereological study by Oda (1984 & 1985) has proved that ¥ (t) is uniquely
determined, not depending on the orientation of the observed wall, if n is a
statistically independent variable of r. Besides, the n-th moment of t is
related to the moments of r as follows ( also see, Kendall and Moran: 1963 );

n+1
n_ _ <r > (n/2_. n+1
<> = T [ e eae (14)
where n £ n
<t' > = mt t)dt
S ome™y(e) )
Using Eq.(14), together with Eq.(12), <r3>becomes
3. 3<te?>n P
<r > TTp<t> <m.grr (16)

Substituting Eqs.(12) and (16) in Eq.(7), the crack tensor is finally given by

_3n<t®>nl9/n
Fij...k = "8TE> Jn.gi> ij...k (17)
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AN EXAMPLE

In order to exemplify the detailed procedure leading to the determination
of crack tensor, a typical site is chosen to investigate. (Here, only the
second rank tensor is calculated. Note, however, that no difficulty arises in
the calculation of higher rank tensors.) The site, located near Nakatsugawa,
Central Japan, is composed of moderately jointed, fresh granite. Joints were
surveyed with the special emphasis on the following points:

1) Orientation of joints: Three orthogonal scanlines (EW, NS and vertical)
were set on the surface of the granite (25mx20mx7m). Strik and dip were
measured whenever the scanlines cross a joint. Orientation of joints is shown
by plotting their normals as poles on Schmidt's equal area net (Fig.3). In
regard to Fig.3, all joints were classified into three groups ((A),(B)

and(C)). The density function E(E) for each group is shown separately in
Fig.4. Using the data of Fig.4 in Eq.(8), Nﬁﬁl N i?] and NEQ] are calculated as
follows: )
al N11 N12 N13 0.135 -0.010 -0.941
N,. = -0.010 0.071 0.078

i = | N2q Npp Np3 | =

N31 N32 N33 -0.041 0.078 0.794

_ (18)
0.789 0.049 0.123 0.031 -0.067 -0.003
N£?1= 0.049 0.058 0.011|; N£§]= -0.067 0.994 0.080
L0.123 0.011 0.153 -0.003 0.080 0.025
In the calculation, we referred to the axes Xq, x2and Xg given in Fig.4.
2) Trace lengths of Jjoints: Joint traces, which were visible on the
horizontal section (25mx20m), were carefully mapped (Fig.5). Two data were

made using the map of the joint traces for each group separately: Firstly, a
scanline pointing to a direction q was set. The number of cracks crossed by
the scanline was counted to give N\{qy h, and the correction term <|n.q|> was

also calculated by using the density function of Fig.4. Several trialS have
proved that (N!91/ n) / <ln.q}> remains almost constant, not depending much on
the selected direction q of the scanline. Secondly, the frequency histograms

of the trace lengths weTe prepared (Fig.6). The joints belonging to group (C)
do not appear on the horizontal map because they are subparallel to the
observed plane. So, two large vertical cliffs located near the horizontal
section were carefully sketched to provide the same histogram (Fig.6). These
histograms are similar in the shape, but differ in the mean and standard
deviation. This 1is the main reason that the joints were classified into the
three groups. Using these diagrams, the moments of the trace length,<t> and
<t2>, were calculated. [A] B) [c]

Using all these data in Eq.(17), the crack tensors F°, Fi" and F35
for the groups (A), (B) and (C) were separately calculated, and were summed up
to give the final crack tensor Fii' as follows:

9.965 0.162 1.651
Fiy =|0.162 5.091 1.066 (19)
1.651 1.066 7.715

If the reference axes are selected as the principal axes x{, xé and xé of
the crack tensor, then Eq.(19) becomes
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Fig.3 Schmidt's equal area projec-— Fig.4 Density function E(n) for
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Fig.5 Map showing the joint traces Fig.6 Histograms of the trace

lengths. (Four more joints having
13.9m, 21.0m, 23.7m and 28.8m in
trace length must be added to the
diagram for group (A).)

on a horizontal section
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10.919 0 0
F.. = 0 7.282 0
1]
0 0 5.169 (20)

with the principal axes plotted on Fig.3.
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4L=2

Q: Could you explain the relation between two dimensional
fabric tensor and a three dimensional one in the sence of image
analysis? (M. Satake)

A: In Rock Mechanics, we are mainly concerned with the three-
dimensional structure formed by geological discontinuities. The
corresponding fabric tensor which is expressed by a three-
dimensional (or one dimensional) observations using rock
exposures and drill holes.

Stereological study which is based on geometrical statistics
has shown that the fabric tensor in three-dimension can be
expressed in terms of 1) the number of cracks crossed by a unit
length of a scanning line, 2) number of cracks associated with a
unit area of a scanning plane and 3) the density function which
describes the orientation of crack normal unit vectors.
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