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ABSTRACT

The invariant recognition of forms is important for many
tasks. The purpose of this paper is to consider algebraic and
moment invariants for perspective transformations. These are
important because every lens system induces a perspective trans-
formation. The approach consists of considering the non-linear
perspective transformation in a higher dimensional, homogeneous
space. In homogeneous space the perspective transformation is
linear and algebraic invariant theory may be used to determine
absolute algebraic and moment invariants. Examples are presented
to demonstrate the theoretical approach. The significance of
this work lies in the importance of invariant recognition for
humans and machines.

1. INTRODUCTION

Recognition of the shape and form of objects in a scene is
easily accomplished by human visual observations even if the
object is translated, rotated, scaled, partially obscured,
slightly distorted, or viewed in perspective. The invariant
recognition of forms is important to humans for a variety of
tasks. Even though variant recognition is also necessary for
some tasks as illustrated by the differentiation of the charac-
ters b,d, and p, and problems such as dyslexia, invariant
recognition is much more common. For machine vision invariant
recognition of form is also important. For some problems, deter-
mining the position (translation transformation) or orientation
(rotation transformation) of an object is of primary concern.
For example, if a robot must pick up a known form object, the
position and orientation of the object must be known in order to
position and orient the robot hand. 1In other cases, the form of
the object is of primary concern, not its position and orien-
tation. Many examples of this situation occur in automatic
inspection in which some property of the object must be measured
and compared to a standard. The primary emphasis of this paper
is on invariant measurements.

Several measurement exhibit invariant properties [1]. Of
all the measurements which may be used for shape and form,
moments have the most elegant mathematical theory of invariants.
The use of two dimensional moment invariants was first proposed
by Hu [2] in 1962 for character recognition. Two dimensional

255



moment invariants of texture patterns in chest x-ray images were
used as features for classification of coal workers pneumoco-
niosis by Hall, Crawford, and Roberts [3] in 1975. Two dimen-
sional moment invariants were also used as features for aircraft
identification by Dudani, Breeding, and McGee [4] in 1977.
Several examples of numerical computations of two dimensional
moment invariants are given in [5]. A theory of three dimen-
sional moment invariants was developed by Sadjadi and Hall [6] in
1980. This theory will be extended in this paper.

The practical application of moments and invariants is
illustrated by the use of moment computations in many available
machine vision systems and of the recent introduction of an
integrated circuit for computing moments.

The purpose of this paper is to present the extension of the
moment invariant theory to include perspective transformations.
The developement of perspective moment invariants is described
and several examples are presented in Section 2. Finally, some
conclusions and recommendations for further work are presented in
Section 3.

2. PERSPECTIVE MOMENT INVARIANTS

The non-linear perspective transformation induced by a
camera system can also be described by a linear transformation in
homogeneous coordinates. The perspective transformation which
corresponds to the pinhole camera model may be described by:

x' 1 0 0 O b4
y' =0 1 0 O y (1)
z' 0 0 1 O z
w' p g r 1 w

where p,q,r are the reciprocals of the locations of the focal
point (fx,fy,fz) and w is an arbitrary constant.

The physical coordinates of a point are obtained from its
homogeneous coordinates by dividing each of the first three com-
ponents of the homogeneous coordinates by the fourth component.

The advantage of homogeneous coordinates is that a single
transformation matrix can accomplish a full perspective transfor-
mation involving not only perspective but also rotation, transla-
tion, and scale.

The general perspective transformation is non-linear in non-
homogeneous coordinates but in homogeneous coordinates the
perspective transformation is linear and algebraic invariant
theory can be used to determine absolute algebraic and moment
invariants.

For a ternary quadratic in a general linear transformation
the number of variables is three and the order is two, therefore,
there are six independent relationships involving the six co-
efficients and parameters of the transformation. Since there are
nine parameters of the transformation, there is no absolute
invariant except the discriminent.[6] For a quaternary quadratic
in a general linear transformation the number of variables is
four and order is two, there are ten independent relationships
involving the ten coefficients and parameters of the transfor-
mation. Since there are 16 parameters of the transformation,
again there is no absolute invariant except the discriminant.
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Let us first consider some two dimensional examples. In
these cases the perspective transformation is described in three
dimensional homogeneous coordinates.

Example 1
Consider the following example in two dimensions given the
ternary quantic of order two;

f = a1x2 + ayy? + azw? (2)

The perspective transformation is described by

x' 100 b4
y'|={010 y (3)
w' 101 w

The transformed quantic is given by;
f(x',y',w'") = (a1 + a3z) x'2 + aZY'2 e a3w'2 - Za3x|w| (5)

Since the Hessian is an invariant, the Hessian determinant is
computed before the transformation as

2a) 0 0
0 2aj 0
0 0 2aj3

8 ajajaj (6)

After the transformation, the Hessian determinant is

2(a;] + a3) 0 -2a3
H' = 0 2ajp 0
-2a3 0 2a3
= 8 ajaja3j (7)

Consider the same ternary quadratic f with a change of notation
for the coefficients, i.e.

f = a200x2 + a020y2 + a002w2 (8)
The discriminant, A, is also an invariant,

3f = 2azpp x

X

3f = 2ap0 ¥

5%

3f = 2agg2 w

oW

A'=8 ap0ap20a002 (9)
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Another invariant can be formed by using the Hessian

azop O 0
H=28 0 apgp O (10)
0 0 agp2

Hence the Hessian is the same as the discriminant in this case.
According to the fundamental theorem of moment invariants, there
exists the following relation for a perspective transformation;

¥200M020%002 = M'200"'020"'002 (11)
Hence,
I1 = H2004020%002 (12)

is a moment invariant form.

Example 2.
Consider the quadratic form

f = ajx2 + azy2 + a3zw? + 2byxy + 2byyw + 2b3xw (13)
f(x',y',w') = (a] + a3 - 2b3) x'2 + agy'2 + asw'2 + 2(byj-b)x'y'
+2boy'w' + 2(b3 - a3)x'w' (14)

The discriminent A is also the same as the Hessian.
Again, according to the fundamental theorem of moment invariants,

there exists the following moment invariant relation for a
perspective transformation;

¥ 200%020%002 * 2"110"011"101 - “200“%11 -”020”i01 - u002“2110
= H'200"'020" 002 + 2"'110"'011" 101 - u'200“%'011
- ¥'o20 1‘2'101 - u'002“2'110 (15)
Hence,
2 2

I3 = oY o20%002 + 2M110%011%101 - "200"011 - Mo20"101
2
-HYo02""110 (16)

Example 3.
Consider the following quaternary quantic of order two;

f = a1x2 + a2y2 + a3z2 + a4w2 (17)

and the perspective transformation described by

(18)

L<-

]
Ho oM
cor o
oo o
Hoo o
£ NN x'
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The transformed gquantic is given by;
£(x',y',£',w') = (a1 + ag) x'2 + azy'2 + a3z'2 + agw'?
-2a4x'w' (19)

Since the Hessian is an invariant, the Hessian determinant is
computed before the transformation.

Also, the Hessian is the same as the discriminant.

According to the fundamental theorem of moment invariants, there
exists the following moment invariant relation for a perspective
transformation;

M2000%0200%0020"0002 = 2000 *"'00027"'0200
H'0020%'0002 (20)
Hence, " u
(M2000+ Y0002)"0200"0020" 0002 (21)
I = 12000102001002010002

is a moment invariant form.
Example 4.
Consider the quadratic form
£ = ajx2 + agy? + a3z2 + aqw? + 2byxy + 2byxz + 2b3xw
+ 2bygyz + 2bsyw + 2bgzw (22)
From (18), the transformed quantic is
f£(x',y',2',w') = (a] - 2b3) x'2 4 a2y|2 + a3zl2 +a4w'2
+ (2by - 2bg)x'y' + (2by - 2bg)x'z' (23)
+ 2b3x'w' + 2bgy'z' + 2bsy'w' + 6bgz'w'
The Hessian is the same as the discriminant. According to the
fundamental theorem of moment invariants, there exists the

following moment invariant relation for a perspective transfor-
mation;

I; = Ay (24)
3N
where
42000 M1100 51010 51001
Au = | H1100 *0200 u0110 U0101
Y1010 Y0110 u0020 u0011

1001  Mo101 0011 0002

it u
H2000 -2%1001 “1100 - “0101 “1010 - T0011 1001

pu' = w1100 ~Yo101 10200 p0110 H0101
p1010 —y0011 0110 10020 H0011
n1001 10101 u0011 10002

is a moment invariant form.
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Example 5.

In the general case, the perspective transformation is
described by four dimensional homogeneous coordinates.

We will now develop the invariant moments for perspective
transformations.
Consider the quadratic form

£ = a1x? + agy? + a3z? + agw? + 2byxy + 2byxz + 2b3xw
+ 2byyz + 2bsyw + 2bgzw (25)

and the perspective transformation described by (1)
The transformed quantic is

f(x',y',z',w') = (a1 - 2b3p + a482)x'2 + (ay = 2bgg + azq)y'?2

+ (a3 - 2bgr+ agr?) z'2 + agw'
+ (2by; - 2bsp + 2a4pg - 2b3qg)x'y'
+ (2by - 2b3r - 2bgp + 2agprix'z’
+ (2b3 - 2a4p)x'w’
+ (2bg - 2bgy - 2bgg + 2a4qr)y'z’ (26)
+ (2bg - 2a4q)y'w' + (2bg - 2agp)z'w'
The Hessian is the same as the discriminant. According to the

fundamental theorem of moment invariants, there exists the
following moment invariant relation for a perspective transfor-
mation;

I
[
=

I1 = bu (29)
where

A 2000 M1100 V1010 M1001
Wo=1%1100 %0200 Mo110 *o1o01
1010 Mo110 Y0020 Moo11
Y1001 o101 %oo1l Vo002

, (H2000 - 2pPM1001 + PZ*0002)
bu’ =] (H¥1100 - PHo101 * Pa¥0002 - 9%1001)
(V1010 - rH1010 * PHoo11 + prfgpo2)

pg“oooz - a¥1001)
q“¥p002)
(Hp110 - r¥o101 - 9Moo11 + arMpoo02)

N 1010 - ploo1l + 95E0002>
(u0110 - I’olol T 94,0011 + r4" 0002)
(Y0020 - 2r¥go11 + ré¥gpo2)

is a moment invariant form.
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A line in original coordinates is shown in Fig. 1. This

line before transformation is mapped to a line parallel to the
original line as shown in the homogeneous coordinates of Fig. 2.
After perspective transformation, the line shown in Fig. 3 is not
parallel to the original line. The image of a line is uniquely
determined by the images of its end points since a perspective
transformation maps a line into a line.

4. CONCLUSIONS

In this paper we have considered algebraic and moment

invariants for perspective transformations. The procedure
involved converting the non-linear perspective transformation in
an original space to a linear transformation in homogeneous
space. Examples were also presented which demonstrate the
technique.
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[2]

[31]

[4]

[5]

[61

Futher research is needed to: expand the theoretical basis
of moment invariants; relate the invariants to known
geometrical properties; relate the invariants to human
recognition; use the invariants for recognition in a variety
of applications.

REFERENCES

E.L. Hall, Computer Image Processing and Recognition,
Academic Press, 1979.

M.K. Hu, "Visual pattern recognition by moment invariants,"
IRE Trans. Inform. Theory, vol. IT-8, pp. 179-187, Feb.
1962.

E.L. Hall, W.0. Crawford, Jr., and F.E. Roberts, "Computer
classification of pneumocpmopsis from radiographs of coal
worker, "IEEE Trans. Biomed. Eng., vol. BME-22, pp. 518-527,
Nov. 1975.

S.A. Dudani, K.F. Breeding, and R.B. McGee, "Aircraft iden-
tification by moment invariants," IEEE Trans. on Computers,
vol. C-26, no, 2. pp. 39-45, October, 1977.

F.A. Sadjadi and E.L. Hall, "Numerical computation of moment
invariants for scene analysis," in Proc. IEEE Conf. on
Pattern Recognition and Image Processing, Chicago, IL, 1978.
F.A. Sadjadi and E.L. Hall, "Three-dimensional moment
invariant," IEEE Trans. Pattern Anal. Machine Intell., vol.
PAMI-2., pp. 127-136, Mar. 1980.

261



Figure 2.

Figure 3.
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Figure I. Original coordinate.
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Homogeneous coordinate (before transformation).
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Homogeneous coordinate (after transformation).
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6-4

Q: In 2 dimensional cases, we can observe all boundaries of an
object; the moments of an object can be obtained easily using
the boundaries. Thus, the moments are important features for
the recognition tasks.

On the other hand, in 3 dimensional cases, we can observe
only one part of the boundaries of an object and the observable
shapes are dependent on the viewers directions. It is very
difficult to determine moments of an object from the partial
boundaries. Thus, it is essentially impossible to use moments
for 3-D object recognition.

How do you deal with this problem in your case? (K. Ikeuchi)

A: I believe we can deal with this situation much like humans
do. I observe the front of the head but infer the existence of
the back of the head. Three dimensional measurments from a

portion of an object may be used to match a model of the entire
object. The computed model match would then provide a "good"
assumption about the entire object.

Q: Dr. Hall, are you aware of the work related to the influence
of the "sectioning transformation" on invariant moments of 3-D
objects? (H. J. Gundersen)

A: No. I am not sure what you mean by "sectioning transforma-
tion". If you mean cutting a section through a 3D object to
obtain a 2D planar section, then I would have to do some work to
relate this to moment invariants. If the sectioning involves a
continuous integral, I suspect there is a relation much like the
one we use in computed tomography.

Q: I enjoyed the paper because of the mathematics, but that's
because I'm by myself a mathmatician. Would you please be sokind
and give me an example for the use of the moment invariance for
an 3-D object recognition for better understanding how this
method works in various applications. (D. Koenig)

A: Moments are now commonly used as recognition features. For
example many machine vision systems in the U.S. use moments of
"blobs" for inspection parameters. Moment invariants have been
used for character recognition, chest x-ray analysis, aircraft
recognition, and for many matching. We have used 3-D moment
invariants for recognizing objects such as cups and footballs. I
believe a group at General Motors are also using these for
automobile inspection.

C: Maxwell, I think, showed that the decomposition of an object
as a series of moments is formally equivalent to decomposition as
spherical harmonics, so that invariants of moments are equivalent
to concepts such as sphere size ellipticity. The question of
object recognition is equivalent to that of characterizing
molecular shape so that progress in these two areas will be of
mutual importance. (A. Mackay)
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C: In using moments in Pattern Recognition, each moment itself
may be used 1instead of invariants, if we can normalize moment

values concerning the related distortion.

your comment on comparison of two approaches A and B.
(J. Toriwaki)

Normalization

calculating camputing
each mament
mament —9 variant
N/

detecting distortion
by a suitable method

J

campensate
distortion

N
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