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A Correspondence between Line Drawings of Polyhedrons and Plane
Skeletal Structures*
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This paper presents a new correspondence between the rigidity of
rod-and-joint structures and the reconstructibility of polyhedrons from line
drawings. Diagrams composed of straight line segments can be interpreted as
two-dimensional skeletal structures (i.e., structures consisting of rigid rods
and rotatable joints) on one hand, and as projections of polyhedrons (i.e.,
solid objects bounded by planar faces) on the other hand. It has long been
known that there is a nontrivial correspondence between the two ways of
interpretation, where the correspondence is 'metric’ in the sense that it is
established through diagrams drawn on a plane. In this paper, a similar but
‘nonmetric’ correspondence between the two systems is established. It is shown
that a certain subclass of rigid structures and a certain subclass of pictures
of polyhedrons are characterized by the same set of underlying graphs.

INTRODUCTION

Diagrams composed of straight line segments can, on one hand, be thought
of as two-dimensional skeletal structures (i.e., structures composed of rods
and rotatable joints) and, on the other hand, be thought of as projections of
three-dimensional polyhedral objects (i.e., solid objects bounded by planar
surfaces). An intimate relation between the two systems has been known. That
is, if a diagram is a projection of some polyhedron, then the associated
skeletal structure has a nontrivial stress that is in the state of
equilibrium. This relation has long been used in mechanisms for graphical
calculus of stresses in structures (Maxwell (1884) and Cremona (1890)), and
also been used in scene analysis for the reconstruction of polyhedrons from
diagrams (Mackworth (1973), Huffman (1977), and Whiteley (1979)).

The converse of the relation, on the contrary, does not hold; a diagram
representing a skeletal structure with a nontrivial stress is not necessarily
a projection of a polyhedron. However, Whiteley and Crapo (1977) proved that
the converse holds if the diagram is planar in a graph-theoretical sense (see
also Whiteley (1982)).

The above correspondence between the two systems is a 'metric’ one; the
correspondence is established through diagrams drawn on a plane, that is,
diagrams whose vertex positions are given as pairs of real numbers. In the
present paper, on the other hand, we shall show that a similar but ’'nonmetric’
correspondence can also be established between the two systems.
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of the Ministry of Education, Science, and Culture of Japan.
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INCIDENCE STRUCTURES AND RECONSTRUCTIBILITY

An incidence structure is a triple I = (V,F,R), where V = {v,...,u}
and F = {fi,...,fa} are mutually disjoint finite sets and R & VxF. The
elements of V are called vertices, and those of F faces. A picture of I,
denoted by I(p), is the incidence structure I together with a 2n-dimensional

real vector p = (Z{,Uls...,%n,Un) € R*. We refer to the points (x;,y;) (i =
1,...,n) as the vertices of I({p).
A realization of I(p) is an (n+3m)-dimensional real vector w =
(Z1s. 1ZnrA1>b1>Cly . .. +OnsbnsCa) € R™® such that
a;x; + bjyi + zi + ¢ = 0 1)

for any (v;,f;j) in R. The realization can be regarded as the collection of n
points and m faces in the three-dimensional space, where the points are
represented by Cartesian coordinates (x;,v;i,z;) and the planes by the
equations

aix + bjy + z + ¢; =0, @)

such that the orthographic projection of the points to the x-y plane coincides
with the vertices of I(p) and that, for any (v;,f;) in R, the ith point is on
the jth plane. The realization w is said to be nondegenerated if (a;,b;,c;)
* (aj,bj,cj) for any 1 = 1 < j < m. We say that I is reconstructible from
I() if I(p) has a nondegenerated realization.

Suppose that a picture I(p) is given. Then x1, y1, ..., Zpn, YUpn are known,
and hence Eq. 1 is linear in z;, a;, b;, and c;. Collecting Eq. 1 for all
elements in R, we get the system of linear equations

Ad,puwt =0, 3)

where A(I,p) is a constant matrix of size IR|x (n+3m), and t denotes
transposition. A vector w is a realization of I(p) if and only if it is a
solution to Eq. 3. The realizations of I(p) form a linear subspace of R™3*,
and its dimension is n+3m-rank(A(I,p)). This dimension is called the degree of
freedom of I(p).

The point p = (X1,Y1,...,%n,Yn) 1S in generic position if x1, w1, ...,
Xn, Up are algebraically independent transcendental numbers over the rational
field. From the definition of algebraic independence, any polynomial of
Xi» Yl» ...» Xn» Yo with rational coefficients is 0 if and only if it is
identically equal to O when i, Y, ..., Tn, Un are considered as
indeterminate symbols. Hence, if p is in generic position, the degree of
freedom and the reconstructibility of I(p) do not depend on p, but on I only.
An incidence structure is generically reconstructible if I(p) is
reconstructible for p in generic position. The degree of freedom of I(p) for p
in generic position is called the generic degree of freedom of I.

We define a function p; on 2 by, for any X € F,

wmX) = 1V + 31XI - IRX)!I — 4,

where V(X) = {vl v € V, ({v} xX)NR = ¢} and RX) = (VxX)NR.
The next proposition is one variation of the main theorem on generic
reconstructibility by Sugihara (1979, 1984) and Whiteley (1984).

Proposition 1. An  incidence structure I = (V,F,R) is generically
reconstructible and its generic degree of freedom is 4, if and only if

(1A) iy F) = 0, and

(AB) gy (X) = 0 for any subset X of F such that | X! = 2.
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(a) (b) (c)

Fig. 1. Pictures of polyhedrons: the incidence structure obtained from a
tetrahedron in (a) 1is generically reconstructible, whereas the incidence
structure obtained from the truncated pyramid in (b) is not.

Example 1. A typical class of incidence structures is obtained from
polyhedrons; an incidence structure I = (V,F,R) is obtained from a polyhedron
P when ve consider Vand F as the set of vertices and that of faces,
respectively, of P, and R be the set of vertex-face pairs such that the former
lies on the latter. Fig. 1 shows some pictures of polyhedrons. The polyhedron
shown in (a) is a tetrahedron, which has 4 vertices and 4 faces (where in
addition to the three visible faces we also count the rear invisible face).
The incidence structure of this object satisfies the conditions (1A) and (1B).
Ve can see that the picture (a) represents a tetrahedron, and this fact is not
disturbed even if the vertices are displaced on the picture plane. Moreover,
the tetrahedron is uniquely fixed in the space if we specify the
three-dimensional positions of all the 4 vertices; it has 4 degrees of
freedom. This is what Proposition 1 states.

The object represented by the picture in (b) is a truncated pyramid,
which has 6 vertices and 5 faces (including the rear invisible triangular
face). It had 18 incidence pairs, because there are 2 triangular faces and 3
quadrilateral faces. Thus, we get 1y (F) = |VI+3IFI—-|R|I-4 = 6+3x5-18-4 =
-1; the condition (1A) is not fulfilled. This picture represents a truncated
pyramid only when the three side edges have a common point of intersection
(when they are extended) as indicated in (c), and hence the incidence
structure is not generically reconstructible.

PLANE SKELETAL STRUCTURES

This section is a brief review of some results obtained by Laman (1970),
Asimow and Roth (1979), and Lovasz and Yemini (1982), which are necessary for
our discussion.

Let G = (V,E) denote an undirected graph having node set V = {vi,...,u,}
and arc set E without loops or multiple arcs. A plane skeletal structure,
denoted by G(p), is the graph G together with a 2n-dimensional vector p =
(X1sYls... %nsUn) € R®". We refer to the points (x;,y;) as the nodes of G({),
and the line segments connecting (xi,yi) with (xj,y;) for {wv;i,v;} € E as the
arcs of G(p).

. An infinitesimal displacement of G(p) is a 2n-dimensional real vector d =
(X1>Uls. .. XarUs) € R such that

(xi-2;) @i-%;) + @Wi-y;)Wi-y;) = 0 4)

for any {vi,v;} € E. The infinitesimal displacement can be regarded as the
assignment of velocities (x;,y:;) to the vertices wv; such that no edge is
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stretched or compressed. Gathering the equations of the form (4) for all edges
in E, we get a system of linear equations

B@G,p)d" = 0, ®)

where B(G,p) is a constant matrix of size |E|lx2n. A vector d is an
infinitesimal displacement if and only if it satisfies Eq. 5. The
infinitesimal displacements of G(p) form a linear space and the rigid motions
of G(p) in R? yield a three-dimensional subspace of this linear space. G(p) is
called infinitesimally rigid (or rigid in short) if the infinitesimal
displacements of G(p) form a three-dimensional linear space, and
infinitesimally flexible otherwise.

Whether G(p) is rigid depends on both the underlying graph G and the
point p € R™". However, if p is in generic position, the rigidity of G(p)
depends on G only. The graph G is said to be generically rigid if G{(p) is
rigid for p in generic position, and generically flexible otherwvise.

We define a function uc on 2' by, for any X € V,

weX) = 21X -1EX)1-3,

where E(X) is the set of arcs connecting nodes in X.
The next proposition is a direct consequence of Laman’'s theorem (1970).

Proposition 2. A graph G = (V,E) is generically rigid, remains generically
rigid if any one arc is deleted, but becomes generically flexible if any two
arcs are deleted, if and only if

@A) pc(V) = -1, and

@B) uc(X) = 0 for any proper subset X of V such that | X| = 2.

Example 2. Fig. 2 gives three plane skeletal structures. All of them are
obviously rigid. Their strength against the break of rods, however, is
different. The structure in (a) becomes flexible if any one rod is broken,
whereas the structures in (b) and (¢c) remain rigid if any one rod 1is broken.
The structure in (c), moreover, remains rigid even if some two rods, e and e’
for example, are broken. Thus, among the three structures, the structure in
(b) only admits the property stated in Proposition 2. Indeed this structure
satisfies (2A) and (2B).

(a) (b) (c)

Fig. 2. Plane skeletal structures: the structure in (a), (b), and (c) are all
rigid, but the structure in (a) becomes flexible if any one rod is broken, and
the structure in (c) remains rigid if two rods (¢ and e’ for instance) are
broken; the structure in (b) only satisfies the conditions (2A) and (2B).
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CORRESPONDENCE BETWEEN THE TWO SYSTEMS

Let P be a polyhedron, that is, a solid body bounded by a finite number
of planar faces. Let V, E, and F be the set of vertices, that of edges, and
that of faces, respectively, of P, and R be the set of vertex-face pairs (v,f)
such that the vertex v is on the face f. Then, Gp = (V,E) is a graph, which we
call the graph induced by P, and Ip = (V,F,R) is an incidence structure, which
we call the incidence structure induced by P.

The next proposition is the main result of this paper.

Proposition 3. Let P be a polyhedron that is topologically equivalent to a
sphere. Then the incidence structure Ip induced by P satisfies (1A) and (1B)
if and only if the graph Gp induced by P satisfies (2A) and (2B).

Proof. First, (1A) is equivalent to (2A), because p;(F) = -ug(V)-1 follows
directly from |Rl =2/ E| and Euler’s formula IVI+I|FI—-1El = 2.

Suppose that Ip satisfies (1A) and (1B). Let X be any proper subset of V
such that | X! = 2.

Case 1: Suppose that the graph (X,E(X)) is connected. Let F; (& F) be
the set of faces whose vertices are all in X, and let Fo = F-F|. Let Vp be the
set of vertices in X that belong to the boundaries of the faces in F2, and let
Vi = X-Vo and V2 = V-X. Let, furthermore, Ey be the set of edges in E(X) that
belong to the boundaries of the faces in Fz, and let E; = EXX)-Ep and
E; = E-E(X). Then, {F{,Fz}, {V,Vi,V2}, and {Ep,E(,Ez} are partitions of F,
V, and E, respectively.

Suppose that the polyhedral surface P is topologically deformed to a
sphere, say K, and that the graph Gp is drawn on K as the vestiges of
vertices, edges, and faces of P. Regions on K bounded by the edges correspond
to the faces in F. If we delete the vertices in V2 and the edges incident to
them, the faces in F2 are merged into connected regions, say A; (1 = 1,...,k),
on K. Note that k = 1 because X = V.

) Let F5 (S F2) be the set of the faces constituting A;, and let us define
E} = EF3)NEz, Eb = EF)NEy (1 =1, ,k), where, for any face set Y, E()
denotes the set of edges belongmg to the boundaries of the faces in Y.
Similarly, let us define V = V(Fé)ﬂVg, Vb = VFEHNVy (i = 1,...,k). Note that
IF31 =22 foranyi (1 =i < k), and F3nNFS = ¢, EANE} = ¢ V}ﬂVé ¢ for
any 1 and j (1S‘L<]Sk)

A connected region A; (1 = i = k) is bounded by edges in E}; the edge
in E} form a closed path surrounding A;. If one travels along the closed path
around A;, one passes each vertex in V) at least once. Hence ve get
| V! =< I|E}l, where the equality holds when every vertex in V) appears
exactly once in the closed path. )

Let R; be the set of incidence pairs concerned with faces in F5. Each
face f; € F5 had |V({f;} )] vertices, and IR equals the sum of such
numbers of vertices over all faces in F3: [|R;l il V({f;} where the
summation is taken over all faces f; in F5. It can be proved that no vertex
appears twice or more on the boundary of any face in Fb. Consequently,
I V({f;} )I equals also the number of edges on the boundary of f;. Thus, we

get IR =2IEbl + !Ebl because in the summation elements of Eb are counted
twice and those in E} are counted once.
Then, we get

weX) =21 Vol +1Vi1)-(lEp! +1E; 1 )-8
31 VoUVi | — I EQUEL | + | Fy 1 +k)- 1 VUV | +2 1 EQUE | =31 Fy | -3k-3

-(IVI+3IFI =Rl -4)+ | V21 +31F21 -3k-2| E2 | -1
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k
=) (1 Vil +31 Fb1 21 Eb| -3)-1
i=1
k
= Y (I VAUV I +81F31 21 Eb| — | Eb| -3)-1
i=1
k
gZ(|V§uvz,x+3|F§|—2|E§| |E§| -4)

I
M~ s

LM F3) =z

where the first equality is the definition of ug, the second one comes from
simple counting, the third one follows from Euler’s formula
I VoUVi I — |EQUE | + |Fil+k = 2 for the subgraph (VoUV{,EQUE;) and
IRl =2IEl =2(|Eyl+[E/|+1E2l), the fourth one comes from (l1A), the
next inequality follows from |Vyl = |E}I for 1 =1 =< k, and the last
equality comes from |R;1 =21 E| + | E}I .

Case 2: Suppose that the graph (X,E(X)) is not connected. Then, (2B) can
be derived easily from the fact that every connected component of (X,E(X))
satisfies pug(X;) = 0, where X; represents the set of vertices belonging to
the jth connected component of (X,E(X)).

Therefore, (2B) is satisfied in both the cases.

Conversely, suppose that Gp satisfies (2A) and (@B). Let X be any subset
of F such that |X| = 2. Let us define Fy = X, Fz = F-F;, Vy=VEFE)INVEF2),

= VF1)-Vo,. V2 =VF2)-Vo, Ep = EF\)NEF2), E\ = EF1)-Ey, Ez = E(F2)-Ep.

Let Gy = (VpUV(,EQUE;) denote the subgraph of Gp having the vertex set VyUV;
and the edge set EQUE].

Case 1: Suppose that Gy is connected. Suppose that the graph Gp is drawn
on the sphere K. If we delete the edges in E; from the graph, the faces in F;

are merged into connected regions, say A;, ..., Ak, on K. Let F} (S F2) be
the set of the faces belonging to A;, and let us def‘lne W =VF3INVy,
Vé VENV2, Eb = EF$)NE, Eé = E(Fé)ﬂEz i = ,k). Note that

VANVs = ¢ and EBNE3 = ¢ for 1 = i < j = k. Moreover, not.e that for every
edge in Ep, one side face belongs to F; and the other belongs to Fy, so that
firstly we have E§NE§ = for 1 =1< j =k, and secondly we have
IV§l = IEhI  for 1S1.Sk. If k = 0, then X = F and hence p;(X) = 0. If
k=1, then |VF3)l =2 3 for any i (1 £ 1 =< k) and hence ve get

X)) = Vol +1 Vi1 +3IF 1| -@IE1+1Epl )-4

S VUV + 1 Fil+k— | EQUE | Y+ E1 1 +2 1 Egl =21 VoUV; | -3k-4

IEl-21VI+2-1E2| + | Egl +21 V21 -3k
k

Y @1 VAUVH | — | ESUES | -3)

i=1

1

k
= X]:uc(V(Fé)) =0

In the above equations, the third equality follows from Euler's formula for
the graph (VoUVi,EQUE;), and the fourth equality from (2A) and | V4| = |E§! .

Case 2: Suppose that the graph Gy is not connected. Then (1B) can be
derived from the fact that each connected component of Gy satisfies
u1(X;) = 0, where X; denotes the subset of X that are bounded by edges
belonging to the jth connected component of Gy.

278



Polyhedrons and Skeletal Structures

Therefore, (1B) is fulfilled in both the cases. Q.E.D.

Example 3. In Fig. 3, the line drawing in (a) represents a polyhedron (a cone
with a quadrilateral base) and there are exactly 4 degrees of freedom in the
choice of the polyhedron. Moreover, the property is preserved if one changes
the positions of vertices slightly on the picture plane. Thus, from
Proposition 1 the conditions (1A) and (1B) are fulfilled. The corresponding
skeletal structure shown in (a’) is rigid, remains rigid if any one rod is
removed, but becomes flexible if two or more rods are removed. The property is
preserved 1if the joint positions are perturbed. Thus from Proposition 2 the
conditions (2A) and (2B) are fulfilled.

(c)

Fig. 3. Two ways of interpretations of diagrams: the pairs of (a) and (a’)
satisfies the conditions (1A), (1B), (2A), and (2B), but the other pairs do
not.

In contrast, the line drawing in (b) does not represent any polyhedron,
and the corresponding skeletal structure shown in (b’) becomes flexible when
only one rod, the rod e for instance, is deleted. Next, the line drawing in
(c) represents a polyhedron, but there are 5 degrees of freedom in the choice
of the object; indeed all the faces are triangular so that we have to specify
the z coordinates of all the vertices in order to fix the object in the space.
The corresponding skeletal structure shown in (¢’ ) remains rigid even if we
delete two edges, the edges e and e’ for example. Finally, the line drawing in
(d) represents a polyhedron and there are exactly 4 degrees of freedom in the
choice of the object, but the property is not preserved when some vertices are
displaced on the picture plane; it represents a polyhedron correctly only when
the two edges e and e’ are collinear. The corresponding skeletal structure
shown in (d’) becomes flexible if only one rod, the rod e for instance, is
removed.
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