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Observation of patterns is subject to geometrical transformations.
and features extracted generally contain information on both shape and
transformation. Thus a basic problem of recognition is how to extract
and separate the two kinds of features: invariant features as
shape-descriptors and variant features as transformation-descriptors.

In this paper the problem is investigated from a general standpoint
of invariant theory using operator analysis. Necessary and sufficient
conditions for the descriptors are given in the forms of linear
partially differential equations. and it is shown that shape-descriptors
and also transformation-descriptors are obtained as the elementary
solutions. The results provide theoretical bases and analytic methods in
the field of pattern recognition., image processing. and also in
computational morphology.

INTRODUCTION

Feature extraction is a key problem in pattern recognition. image
processing (measurement). numerical taxonomy., and also in computational
morphology. In practical situation. observation of patterns is subject
to geometrical transformations such as translation. dilatation.
rotation. etc.. and features extracted from patterns generally contain
two kinds of information: shape information and transformation
information. in a mixed form. On the other hand. recognition of patterns
consists of two mutually independent aspects: shape recognition and
transformation recognition. In fact, the concept of shape is basically
independent of (invariant to) transformation. and vice versa. It may be
stated as the problem of shape vs size in the context of morphology.
Thus a basic problem of recognition is how to extract and separate the
two kinds of features: invariant features as shape-descriptors and
variant features as transformation-descriptors.

In pattern recognition researches, there have been two different
ways of approach to the problem (mainly to the problem of constructing
invariant features). One is the normalization: i.e.. preprocessing to
reform input patterns to “standard” ones with regard to transformation.
After input patterns are normalized. any features extracted are assured
to be invariant. The other approach is to extract such features as are
designed to be invariant to the transformation group under
consideration. The auto-correlation function of a pattern or its Fourier
transform. the power spectrum. is a well-known example of invariant
feature to translation.

Hu (1962) employed the classical algebraic theory of invariants
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(e.g. Weil: 1946) as a theoretical tool for constructing moment
invariants and applied the results to character recognition. Moment
invariants have been extended to 3-dimensional cases (Sadjadi & Hall:
1980) and also been considered in a general frame (Teague: 1980).

Amari (1966) developed a theory of normalization in a linear
feature space from a viewpoint that a normalization procedure in a less
dimensional feature space is much easier than that in a high dimensional
pattern space. He studied the condition of possible normalization in a
general linear feature space, namely the condition that the linear
feature space admits a given transformation group. and thereby showed
the invariant-theoretical meaning of Fourier or moment Llinear features
and also the normalization procedures in practice.

Along Amari’s line. in this paper the conditions for features to be
shape- or transformation-descriptors are investigated in a general
theoretical frame using operator analysis. and analytical methods for
constructing such descriptors are developed. More directly speaking.
given any transformation group. we shall derive such equations that
yield the descriptors as the solutions (parts of the results have been
obtained in Otsu: 1973, 1981).

DEFINITIONS AND FORMULATION

Pattern Space: Patterns are generally represented by real bounded
functions f(r) (reRVM) with compact supports within a domain D in a
N-dimensional Euclidean space RN. A pattern space is defined by a set of
such functions and denoted by Py It is a function space. and some
topology 1is introduced by norm | |l. For examples, P, stands for
time-signals. and P, for characters, pictures. or images.

Invariant Transformation: Such a geometrical transformation as
preserves the shape of a pattern (e.g.. translation. dilatation.
rotation. etc.) is called an invariant transformation (IT). It in total
forms a Lie group (e.g.. Chevalley: 1946) and is represented by an
operator T(1) in pattern space Py. Usually T(A) is a product of several
elementary ones (called hereafter EIT’'s):

TOA) = TChpeons A = TyCAp) » = =Tl Ay) (N

Each EIT is expressed by a one-parameter linear continuous operator
satisfying the followings:

1) Closeness: T(4): f €Py = T(A)f €Py (AEA: range of 1)

2) Linearity: T(A)(afy + bfy) = aT(A)f; + bT(A)Ff,

3) Continuity in norm: [IT(A)f; - TC(A)fll - 0 as f; — f

4) Continuity in parameter: T(A)f — T(u)f as A — u
and group property with respect to the parameter

5) Additive group (AG): T(A)T(u) = T(A+y), T(0)=I (unit operator)

5') Multiplicative group (MG): T(A)T(x) = T(Apu), T(1)=I
For examples in P;. translation, T(A)f(x)=f(x-2). is AG. and amplitude
change, T(u)f(x)=uf(x), is MG. It should be noted that the difference
between AG and MG is merely due to the way of parameter representation:
viz., T(u) of MG is converted to T(A) of AG by changing parameter as
r=exp(A). Thus, taking this into account. our theoretical.discussion
will be confined to AG case of parameter (21).

Feature Extraction: Feature extraction is viewed as a mapping V¥
from pattern space Py to a feature space (practically a vector space of
finite dimensions). The mapping ¥ is nonlinear in general and might be
represented by a set of nonlinear continuous functionals zj=11fj[fl.
j=1.....M, where f is a pattern, and z; is the feature value associated
(complex value in general).
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Problem Statement: Under those preparations. we can here state our
problem in a more precise way. Corresponding to the transformation of
pattern by T(A), the associated feature values generally change from
Tifl to ¥ TC(A)f) Then the condition for the features to be
shape-descriptors (or invariant features) is that the feature values do
not change under IT T(A): namely,

z; = Ul fl =TT (2)

On the other hand. the condition for the feature ¥ /f] to be
transformation T, (A,)., or simply A, -descriptor is that the increment of
the feature value just gives the value of parameter 1, of the EIT. being
invariant to the other EIT’s: namely.

A = TITOOF] - T (3)

This corresponds to the fact that any transformation is of relative in
nature. and the parameter A of T(A) is described in difference.
Hence. our problem is how to construct such descriptors

ADMISSIBLE LINEAR FEATURE SPACE

As a step to such a directly intractable nonlinear case. we shall
consider the elementary case of linear feature extraction

Linear Feature Extractor (LFE): In the case of linear feature
extraction., the mapping is given by a set of linear continuous
functionals:

z; = <g; f> = ngj(r)f(r)dr (j=1..... M), (4)
or
z=<Kg >, z=(zp....79) €M g=(gp..., o) (47)

where g; is a differentiable complex-valued measuring function which
uniquely characterizes the 1linear functional, i.e. linear feature
extractor (LFE), and FM is a linear feature space spanned by the set of
Z:.

’ Conjugate and Induced Operators: Here. we shall introduce some
notions of operators. EIT T(A) on pattern f can relatively be regarded
as EIT T*(A) acting on measuring functions g. T(A) or T¥(1) induces a
transformation (change) of the feature values z. which is symbolically
represented by T(A). Then T*(1) and T(A) are called the conjugate and
the induced transformations (operators). respectively

Tz = <g T(AF> = <T¥(A)g., > (5)

In the limit of the differential 9/9A as A — u ( u is the unit
element of the parameter group. u=0 for AG, and u=1 for MG). we have
Tz = <@g, Tf> = <t*g, f>. (6)

Then the infinitesimal transformation operator =t is called the
generator. and t* and 7 are called the conjugate and the induced
generators, respectively.

Representation Theorem of EIT: According to the theory of Lie
group, a finite transformation T(A) can be represented by its generator
t as follows (It is also valid for T*(1)).

T(A) = exp(AtT) (7)

For example, in the case of translation in P;. T(A)f(x)=f(x+1). the
generator t turns out to be a differential operator:

Tf(x) = kllﬂ(a/al)T(l)f(x) = ki}rﬁ\(&/&l)f(x+l) = (d7dx)f(x)
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By applying the representation theorem we have
f(x+A2) = T(A)Ff(x) = exp(AT)f(x) = ;Zto(lk/k! Y37 ax)KF(x).

This means that the well-known Taylor expansion is a good example of the
representation of translation

condition for Recognition: For the recognition of shape and also
transformation, it is necessary for FM to admit the transformation:
namely. FM should be close with respect to T(l)A(or transformed z should
remain in FM), and the induced transformation T(21) shoq}d be expressed
by parameter A only. independently of pattern f. Then T(A) is reduced
to a linear representation of EIT and represented by a matrix H(R)
called a multiplier (then so is T*(1)).

H(A)Zz = <H(2a)g, f> (8)
In the same limit as in Eq. 6. we have
T =t*¥=¢ (9)

where C=H’ (u) (differential of H(A) at A=u) is a constant matrix called
a weight matrix. Conversely. by the representation theorem. we confirm

T(A) = exp(AT) = exp(AC) = H(A).

Hence we have the following theorem.

Theorem 1: A necessary and sufficient condition for FM (or LFE @) to
admit EIT T(A) is given by the following equation of g (usually a linear
partially differential equation system):

t*g = Cg (C: any constant matrix) (10)

Then the locus and the tangent of z in the linear feature space FM are
given respectively by

T(A)z = H(A)z = exp(AC)z and +tz = Cz. (1)

Corollary 1: Especially when C is diagonal. LFE 2;=<g;, f> are called
relative invariant. Then the Eq. 10 reduces to the eigen-equation of ¥

t*g; = c;9; (c;: eigenvalue), (10a)

and the measuring function g; are given by the eigen-functions
Corollary 2: Further especially when c;=0 (zero eigenvalue). LFE is
called absolute invariant. Then

T(l)ZJ = Zj. (11a)

Theorem 2: Absolute invariant LFE's (c;=0) are linear shape-descriptors.
Theorem 3: Relative invariant LFE's of weight «c; (c;#0) give
transformation-descriptors in the following form:

A= [Log?(l)zj - logz; l/c; (12)

Absolute and relative invariant linear feature extractors for various
transformation groups have intensively been investigated in Otsu (1973).

CONSTRUCTION OF NONLINEAR DESCRIPTORS

Consider nonlinear quantities (analytic functions) of z which will
indicate shape or transformation. Namely. we shall consider to construct
nonlinear descriptors from the admissible linear feature space (ALFS):
i.e., shape-descriptors (invariant features) s;=¥;(2) and
transformation-descriptors (variant features) t,=®,(2)., or in vector
forms s=¥(z) and t=0(z). where

1) dim. t = K (number of parameters of IT)
2) dim.s + dim. t = M (= dim. F™ = dim. z )
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3) shape dim. = pattern dim. - K (IT dim.)

4) dim.s (=M-K) = shape dim.
A couple of s and t is functionally and informationally equivalent to z
and is a sort of decomposition of 2z into shape-descriptors s .and
transformation-descriptors t. It is noted that since the dimensionality
of patterns is very high in general. the essential dimensionality of
shape is usually much larger than the finite dimensionality (or number)
of shape-descriptors. Therefore. contrary to transformation-
descriptors. shape-descriptors describe shape approximately in general
cases. Of course. so far as we are concerned with special cases of
finite dimensional patterns. for example N-polygonal binary images in
Py, the essential dimensionality of pattern and of shape is finite (2N
and 2N-K. respectively). therefore then a set of finite number of
functionally independent shape-descriptors (2N-K in number) will be
sufficient.

Condition for shape-descriptors: By definition in Eqg. 2. the

condition for a quantity V¥;(z) to be a shape-descriptor (invariant
feature) is given by

vi(Tapa) = T2 = s; G=1,....K)

Hence. differentiating this by 1; yields the following result.
Theorem 4: A necessary and sufficient condition for W;(2z) to be a
shape-descriptor is that ¥;(z) is a solution of the following linear
partially differential equation (LPDE). where symbol - denotes the inner
product:

grad¥;(z) - 7;z = 0 (j=1.....K) (13)

Condition for transformation-descriptors: Similarly, the condition
for a quantity ®,(z) to be a transformation (4i,)-descriptor is given by

D (T (A2)-B(2) = 8454, (§=1..... K>

where 6,; is the Kronecker symbol. &,;=1 for j=k and &,;=0 for j#k. By
differentiating with respect 1; we have

Theorem 5: A necessary and sufficient condition for ®,(z) to be a
transformation (A,)-descriptor is that ®,(z) is a solution of the
following LPDE:

grad®,(z) - T;z = §; (j=1.....K) (14)
Here. according to the theory of differential equations., both

LPDE’'s can be reduced to the almost same subsidiary equations. ordinal
linear differential equation (LDE) systems of the following type:

dZ] d22 dZM da
= — = e e e = — (=—) (15)
Tz, 1Tz 72y 1

where it should be noticed that dA for AG is changed to du-/up for MG.

Hence. so far as ALFS (z) and the induced generator 7 are obtained for
given IT T(A). the descriptors for shape and also for transformations
can be derived and constructed as the elementary solutions. or integral
constants., w(z)=const. of the above equation. It should be remarked that
both nonlinear descriptors for shape and also for transformation can be
derived from the identical LDE systems. In fact. according to the theory
of LPDE. the general solution of Egq. 13 is given by an arbitrary
function of the elementary solutions w(z)’s of Eq. 15 disregarding the
last term. This corresponds to the fact that any function of invariants
is also invariant. Therefore we may adopt the elementary solutions as
elementary invariants (or shape-descriptors). On the other hand. the
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transformation-descriptor. ®,(z) for 1,, is obtained from an elementary
solution of Eq. 15 regarding the last term. i.e. by an integral constant
in such a form as A,=w(2z)+const.

SOME SIMPLE PRACTICAL EXAMPLES

In order to illustrate the preceding theoretical discussion in a
more realistic way. we shall practise some simple examples

Example-1 (Rectangular Wave-Form Recognition in P;)
Consider a simple case of P;. Patterns to be recognized are assumed to
be rectangular wave-forms, which can be specified by two parameters:
width w and height h. We consider only one EIT, translation:

TCAF(X) = f(x-2) (16)

In this case the dimensions of patterns and of shape are 3 (w, h, 1) and
2 (w, h)., respectively. Therefore we need at least (and at most in this
case) 3 features (LFE’s). from which two shape-descriptors
(corresponding to w and h) and one transformation-descriptor for
translation (A1) will be constructed.

A) Construction from relative invariant LFE: The generator 7 of the
translation T(A) and its conjugate generator t* are obtained
respectively as follows:

T = -3/dx and t*¥ = 3/9x 17

Therefore the necessary and sufficient Eq. 10a for relative invariant
LFE is, in this case, given by

(8/3x)g;(x) = c;9;(x). (18)

The solution is g;(x)=exp(c;x) without regard to an irrelevant constant
coefficient. This means that the Fourier-Laplace transforms

z; = <exp(cjx).f(x)> (19)
are relative invariant LFE’'s for translation. Then by Theorem 1. we have
?(A)zj = exp(c;A)z; and Tz; = c;z;. (20)

As a minimal set of features to constitute ALFS. we shall here
choose the three features corresponding to the weights: ¢;=0. c,#0.
c3#0.¢c,. Then the necessary and sufficient Eq. 15 for nonlinear
descriptors is given by

dz;/70 = dz,/(cyz,y) = dzz/(czzy) ( = dAs1 ) 21

By solving this LDE system. we can derive nonlinear elementary
descriptors as shown in the following.

From the first term of Eq. 21 we have dz;=0, or z;=const. The second
term and the third term provide a solution. cjlogz,-c,logzz=const. Thus
we have two shape-descriptors:

c
sy = 2y =<1, f> and Sy, = 2y 3/z3c2 (22)
On the other hand. one transformation (A)-descriptor is obtained from
the solution of the equation: for example. combining the fourth term
with the second term. we have dA=dz,/(c,z;). or A=(logz,)/c, + const.
therefore we have the following nonlinear transformation-descriptor
(confirming Theorem 3):

A = 1logT(1)z, - logz, Ve, (23)
B) Construction from ALFS: Consider simple LFE, moments:
z = (mg. my.my), where m; = <x3, f> = [pxif(x)dx (24)
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It is easy to show that these moment features admit T(A) (Theorem 1). In
fact. the conjugate generator and therefore the induced generator is
given by a constant matrix as shown in the following

tmy = <t*3, > = <(a/ax)x, > = jmj_;  (m;=0 for j<O0) (25)
Therefore. the Eq. 15 for nonlinear descriptors is given by
dmo/o = dm«l/ITIo = dm2/2m‘ (=dasz1) (26)

The first term shows my = const. The second and the third terms yield
another integral constant mgm,-m;2 = const. These two elementary
solutions just provide two invariant features, shape-descriptors:

s;=my and s, = mgmy - my? (27)
The parameter w and h which characterize the shape of rectangular
wave-forms are functionally equivalent to the shape descriptors s, and

s,. Actually the formers can be expressed in terms of the latters as
follows.

W = 2(3sy/5))% and h = si/w (28)

On the other hand. from the second and the implicit fourth term we
obtain a transformation-descriptor:

A = increment of m;/my = ?(A)[m]/mol - my/mg (29)

These results theoretically confirm our intuition that the integral
s; and the variance s,/s; of pattern are invariant under translation. and
the mean m;/m; represents the relative amount of translation (A4).
Example-2 (Similarity-invariant recognition in P,)
We shall consider patterns f(x,y) in P,. They may be pictures,
characters. or images on a plane, and may be given in gray level
binary. line-drawings. whatever. As IT (invariant transformation). we
shall consider similarity transformation consisting of the following
operators.
Translation (AG): Ty(a, B)f(x,y) = f(x-a,y-8)
Amplitude (MG) : Ta(u)f(Xy) = pfix,y)
Dilatation (MG): Tp(v)f(X.,y) f(x/v.y/v)
Rotation (AG): TR(O)IF(X,y) f(xcos@-ysinf, xsinf+ycos6)
The dimensionality of pattern is infinity in this case. and so is the
shape dimensionality. The dimensionality of IT is four.
As ALFS. we shall consider normalized central moments (the center
of gravity is placed at the origin.):

Lpq = <xPy9, f>/<1, > ( p+ta=>2. pge=1. K10=#01=0) (30)

Since pupq are absolute invariants for T; and T,. we have only to consider
the rest Tp and Tz. We shall confine our discussion here to the least and
simplest ALFS: i.e.., 2=(puo0, 11, £02).

Conjugate generators for Tp and Tg are easily obtained as

t* = x(3/3x)+y(3/3y) and t*; = x(3/3y)-y(3/dx). (31)
Therefore induced generators are given by
Tpz = (2zy. 225 2z3) and Tz = (-22, z;-23 2zy). (32)
Hence the equations for descriptors are
D: dz;7(2z)) = dzy/(2z5) = dzz/(223) ( = dy/y ) (MG)
and (33)
R: dZI/(_222) = dZZ/(zt’z:;) = d23/222 ( =dé-s1) (AG).
By solving this simultaneous LDE system, we have the following results.
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One similarity-invariant shape-descriptor (because 3-2=1 in this case):
e

Joapn? ¥ (pggmpen)?
sy =L = 3] a0~ K02 (34)
oo t Ko2

Transformation-descriptors for T, and Tg:

D: v = JIT(w) v
and K20 ¥ K20 (35)
2111

R: @ = increment of ;Ltan"
2 120~ 102

The other transformation-descriptors for Ty and T, can be derived if we

apply our method to the other admissible features. for example ordinal

moments.

It is interesting to note that the shape-descriptor L in Eq. 34 is
just the measure of "lineality” of the pattern shape and closely related
to Karhunen-lLoéve line fitting (Otsu: 1984). In fact it is shown that
the following properties hold:

1) Bounded as 0 = L = 1.

2) The maximum L=1 is attained if and only if pattern f is a straight
line.

3) The minimum L=0 is attained if and only if pattern f is uncorrelated
(211=0) and isotropic (ugp=s92).

CONCLUSION

The problem of shape and transformation recognition has been
studied from a general standpoint of invariant theory using operator
analysis. Necessary and sufficient conditions for shape- and
transformation-descriptors have been shown to be given by linear
differential equations. Those (nonlinear) descriptors are obtained as
the elementary solutions

The results will provide theoretical bases and analytic methods in
pattern recognition. image processing. and also in computational
morphology.
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