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Crystallography is now in an epoch of revolution. Since some
configurational long range order with icosahedral symmetry and
without translational symmetry was experimentally observed in
Al-Mn system in 1984, the general framework of configurational
order has been required to include such a kind of order.
Translational symmetlry is no more the most important property in
the coming generalized scheme.

The purpose of this paper is to propose a three—dimensional
Penrose transformation explicitly and to discuss the difference
due to the dimensionality. There are several categories in the

concepts of quasicrystal. The ideal one is, in a sense,
homogeneous, isotropic, self-similar and connected with golden
ratio. Some degrees of freedom remain in three—dimensional case

in contrast with deterministic two—dimensional case.

§1. INTRODUCTION

As Mendeleev’s periodic table predicted the existence of

some never discovered atomic elements, some aestheticdally
motivated researches on nonperiodic tiling effectively predicted
the atomic arrangement with new type of long range order. The

discovery of the diffraction patterns with icosahedral symmetry
in some Al-Mn alloy system was reported by Shechtman et al (1984).
It was a really shocking affair. The experiment suggests the
existence of some icosahedral long range order of new type and
then the defect of the classical crystallography as a general
system of ordered arrangements was revealed (See, for example,
Mackay:1986). Penrose tiling (Penrose:1974 & 1977, Gardner:1877),
being nonperiodic, self-similar and pentagonally symmetric, is
the prototype of the concept of quasicrystals (Mackay:1981 &
1982, levine & Steinhardt :1984) to understand such a kind of
ordered structure. Almost nobody had dreamed that there are some
inorganic materials with such a structure. Now the problem is one
of the most important ones in physics and also in Science on
Form.

It has long been known that pentagonal or five—fold
rotational symmetry can not coexist with periodicity. A crystal
is defined as a periodic arrangement of atoms. The rotational
symmetry which can compatible with the translational periodicity
is only four kinds; 2-, 3—, 4— and 6-fold. Pentagonal or 5-fold
symmetry, being the elements of the most symmetrical point group,
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icosahedral group 7., is out of scope in classical <crystallogra-—
phy (see, for exampqe, Kittel:1971).

Therefore the discovery of some long range order with
icosahedral symmetry and without periodicity in a material system

was really shocking. However, nonperiodic long range order has
been already studied by some sensitive people before Lhe
experiment. The tessellation of a plane with regular pentagons

were tried independently by Husimi (1969) and by [Penrose(1874).
They both noticed some self-similarity contained in a pentagon
and classified the shapes of gaps which necessarily appear when a
plane is systematically packed by equal pentagons and/or the
pentagonal aggregates consisting of six pentagons. Penrose
succeeded in the nonperiodic tiling with only two kinds of
elements (Fig.1). Being recursively generated, the Penrose tiling
has a kind of self-similarity. The concept of qua:icrystal is the
generalization of the essence of the Penrose tiling. It also
suggests the possibility of solving the problem of <conflict
between long range order and short range order (Ogawa & Tancmura:
1874, Ogawa:1983).

The purpose of this paper is to extend the Penrose’s logic
of generating nonperiodic ordered patterns into three—dimensional
case. The concept of quasicrystal has not been established vyet.
There may be various grades of order in quasicrystal, for
example, with or without self--similarity. The present model
concerns with the ideal quasicrystal in the sense that it is
considered to be symmetrical as high as possible.

§2. THE PENROSE’'S LOGIC OF HIERARCHIC GENERATION OF PATTERNS

The Penrose’s logic of systematic generation of infinite
patterns is described as follows. We are concerning the patterns

onsisting of only some kinds of basic elements. Suppose Lhere is
(0) (1)
<> g (1) (2)
(o")

(3)

Fig. 1 The Original Penrose Transformation of Two Arrowed Rhombi;
Arrows are omitied in higher gencrations. Side length should be
always regarded as 1. The limiting figure is the Pcnrose tiling.
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a transformation of each of these elements into some other
pattern consisting of these basic elements. If the transformation
is proper, some patterns of these elements can be transformed
again and again. Therefore, an infinite pattern, which c¢an be
nonperiodic, is generated after the infinite recursive operations
of the same transformation. Penrose actually found such a
transformation which is referred to as the Penrose tiling

The Penrose tiling of rhombic wversion, consist of two kinds
of rhombi, A C(acute rhombus with an angle of 72°) and O (obtuse
rhombus of 144°) of edge length 1. A and O are respectively
transformed into A¥ and 0¥ of edge length ==(/5+1)/2=1.618
(golden mean). The numerical relation there is given by

A—A¥ =2 4A+ 0, 0—- 0¥ = A + 0. ¢D)

It is noted that the existence of a special arrangement of these
rhombi is essential for the above mentioned logic can be applied

The transformation is shown in Fig.1l. It is noied that the edges
of these rhombi should be regarded as not simple segments but two
kinds of arrows (De Bruijn:1981b-¢) so Lhat all the rhombi on the
edge should be completed and any triangles should not remain.
Only the edges of the same kind of arrow and the same direction
fit each other.

§3. THREE-DIMENSIONAL PENROSE TRANSFORMATION

In order to keep icosahedral symmetry as a whole, fhrnuis
convenient to use six basic vectors icosahedrally chosen as five
vectors pentagonally chosen are used in two—dimension. The angles
betwecen the iwelve (twice of six) vectors are either of 8, =n-6,
or m, where O=atan2=61.43%° Therefore, two of the twelve vectors
construct only one kind of rhombus, which is referred to as the
golden rhombus since the ratio of the diagonals is the golden
mean T. Three of the twelve vectors construct two kinds of
rhombohedra As and Og (Fig.2). In Ag, three vertices of angle &
meet at a principal vertex on the principal diagonal and three of
=6 in Og,. AS is rather long and 06 is rather thin. The ratio of
their principal diagonal lengths is dA/do=c3=4,236

The basic elements of three—dimensional Penrose tiling are

these two rhombohedra AS and 06' It is noted that the quasi-—
lattice point on a trigonal axis can be expressed with integer M
and N in the form of MdA+Nd 5 In the rhombic version of the

original Penrose tiling, all the vertices of rhombi transformed

Fig. 2 The Basic Elements AB and 06 in Three-Dimension.
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into some vertices. Therefore this condition 1is imposed to the
three—dimensional extension of the Penrose transformation. Then
the expansion ratio can not be less than 73 in order to keep the
principal diagonal of O

This value corresponds to the following numerical relation

55 Ag + 34 Og, 2a)
Og — 06

34 Ag + 21 Og. (2b)

It is noted that the Penrose’s logic can not be applied unless a
set of proper arrangements is found as in two—dimensional case.

The author (1985) succeeded in finding some sets of proper
arrangements. The way is essentially multiple in the sense that
the only way <can not be uniquely chosen in principle. Some
freedom inevitably remain, while the translation in two—dimension
is completely deterministic. As will be discussed in 85, there is
no deterministic transformation in three—dimension.

In this transformation, only the skeleton parts of A * and
0 are uniquely determined (Fig.3-4). A skeleton of AG consists
0? the overlapping two Kgg’s which share an Og in common and some
As—rlch parts near the eight vertices of the expanded rhombo-

hedron. It has a 'missing part’ at the mid-part of each edge,
which will be treated later. Here, Kqn, Kepler triacontahedron,
is one of five golden isozonohedra listed in Table 1, all of

whose faces are golden rhombi. Their naming is due to Coxeter and
Miyazaki (Miyazaki & Takada:1980, Miyazaki: 1983). In Table 1, F,
E and V are respectively number of faces, edges and vertices, Vk

that of k—edged vertices, and Ny ’atomic numbers’ inside the
zonohedron respectively on tge surface and in the inner part.
An skeleton of an O looks like a hexagonal snowflake,

though the symmetry is trigonal as it should be. At the mid-part
of their edges, there is a "missing part’ again. The shape of
these missing parts is some parts of on. The edge coincides with
the pentagonal axis of F 0 The 1£struct1%n for the construction
of the ball and stick model of AG and 06 in Ogawa (1985) and the
coordinates in the six—integer representation of the quasilattice
points in Appendix [in more details in Ogawa (1986¢)1].

The most striking feature of AG* and 0 * is that the
skeleton structure of the face is common to all the faces of A
and 06 . In lig.5, A is a rhombic face of AG A’ its section at a
mirror plane, KF a rhombic face of KSO in Ag and F20 in Og”, and
F’ a section of F o through the pentagonal axis. nother
important fact is that the structure is so symmetrical that the
edges can be regarded as mere segments. It is of no use to regard
the edges as arrows as in two—dimensional case. Therefore any two
faces fit each other and every 'missing part’ construct an F20.

Table 1 Five Golden Isozonohedra

Zonohedron symbol F E V (V3 Vg Vg) Ny Ny
Acute rhombohedron AG 6 12 8 (8, 0, O® 1 O
Obtuse rhombohedron 06 6 12 8 (8, 0, O® 1 O
Bilinski dodecahedron B12( 2Ag+20g> 12 24 14 (8,-6, 00 3 1
Fedorov icosahedron o (F5Ag*+50g) 20 40 22 (10,10, 2> 6 4
Kepler triacontahedron KSO( 10§6+1006)30 60 32 (20, 0,12) 10 10
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§4. THE OTHER HIERARCHIES IN TWO-DIMENSION

The original penrose tiling is not the only possibility of
the hierarchic generation of patterns even if the same set of the
basic elements A and O concern. There are many other similar
possibilities. Actually the author found two hierarchies of the
expansion ratio 72=2.618 (Fig.6-7). All the edges of A and O
are of the same structure; l+r, where 7 is the principal diagonal
of A. Now the arrow of only one kind is enough.

(0) : : (D@

ufl O S SS
FESHR ’gﬁﬁit{%ﬂ?&

W
e A
on!

Fig.7 Another New Hierarchy of Expansion Ratio 7?2
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There is a two—dimensional case where the edges can be regarded
as mere segments (See Fig.8). The expansion ratio in this case is
J57=3,618. Generally in the case of such a large expansion ratio,
there are inevitably some highly symmetrical region where the
inner structure is less symmetrical than the outline (see, for
example, marked parts in Fig.8). It is noted that the inner
structure can be reconstructed in such a highly symmetrical
region without disturbing any other parts when the edges are mere
segments. This property yields the residual degree of freedom. It
is also the case in the inner part of AG in three—dimensional

<> Ox
P AR >

Fig.8 A Hierarchy of Expansion Ratio /57

() : \/\ (1) i (2)

(0') (1) (2') (3")
A4 \“s‘.";.
: e
28553

Fig. 9 Hierarchy of Expansion Ratio 1+/2 in the Octahedral case

§5. ESSENTIAL DEGENERACY IN THREE-DIMENSIONAL CASE

The. residual degrees of freedom at the edges of AG* and 06*
should ©be distinguished from the general case mentioned above.
The freedom in the inner part can be arbitrarily fixed. The
different way of fixing corresponds to the different hierarchy.

The case at the edges of Ag* and Og* is different. Each of
the two ends of a edge consists of the common edge of five As’s
and between them is an F20 coinciding its five—fold axis to the
concerned edge. There are only four inner quasilattice—-points
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inside an F2 . The contradiction between the symmetry of the
outlook and that of the inner structure does not allow the
division of Fgn. If one dare to divide them, extremely large
.- 20

number of basic elements, whose shape are common and whose edges
are differently colored, are necessa.y. The interpretation that
only the skeleton is determined seems more beautiful as a logical
structure. Such a case of degeneracy may be referred to as an
essential degeneracy

§6. A CLASSIFICATION OF HIERARCHIES

A number of hierarchies appeared in 1his paper. They can be
classified by some difference of the logical structure. They are
summarized in Table 2.

In column [E] of Table 2, 'unique’ means that the
transformation is fully deterministic. Generally, the old
vertices at the corner of the basic elements transformed into
vertices of different form and a new points are born in some

form. The number of ways of birth is small for small expansion
ratio and large for large expansion ratio. In the course of
recursive transformation, they <change their forms. In some

Table 2 Summary of Hierarchies

Hierarchy [A] [B31 rci [D] [E] [F1 [G]
Pentagonal cases in 2-D

(1> Penrose A 0 2-1-1-D T 2 u c h
(2) Fig. 6 A 0 (5-3-3--2> T2 1 u c p
(3) Fig. 7 A 0 (5-3-3-2 T? 1 u f p
(4) Fig. 8 A O (10-5-5--5) J5T 0 d c, f p
Octahedral cases in 2-D

(5) Fig. 9 S R (3-4-2-3) 1+/2 1 u f h
(6) Watanabe et al S R (6-8-4-8) 2+/2 0 d f p
Icosahedral Case in 3-D

(7) Ogawa Ag Og (55-34-34-2D) T3 0 e f p

Column [Al; the basic elements, S is square and R rhombus of 45.
[Bl; a set of number of elements which correspond the
coefficients in the r.h.s. of Egs. (1) and Eq. (2).
[Cl; the expansion ratio
[DI; the number of varieties of arrows.
[El; 'u’ stands for ’unique’,
*d’” for 'degenerate’
‘e’ for ’essentially degenerate’.
[F1; the type of the limitting behavior of a vertex in
the course of recursive transformation;
¢’ stands for ’cyclic’,
*f’ for *fixed pattern’.
[Gl; 'h’ means the existence of half-mirror pattern’ as
shown in Fig. 10,
means that some periodic arrangements of basic
elements are allowed as operand of transformation.

P
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hierarchies, they go into some limit cycle of changing form and
take a fixed limiting form in the other. For the latter case,
there exists a center of self—-similarity in a sense. Column [F1
describes such a kind of nature

(a)

(b) P~
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Fig. 10 "Half-Mirror Patterns” (a) in the pentagonal case
(b) in the octahedral case

For hierarchy (1) and (5), a set of "half-mirror patterns’
shown in Fig. 10 consistiently exists on each of two kinds of
tiles. It is noted that what looks as a straight line consists
of the pieces of segments on every tiles. The lines obey the law
of reflection at every edges of tiles. Such a pattern seems to
exist only in the primitive cases for a given set of tiles. In
these patterns, the arrangemeni of cach set of parallel lines is
of a one—dimensional quasilattice. The dual of the pattern is the
tiling of the next generation. The pattern looks something very
suggestive.

§7. CONCLUDING REMARKS

The origin of one of the important differences due to
dimensionality is in that a sum of two of five basic vectors in
two—dimension directs to another basic vector and all of the
other Tfive vectors are necessary to point the direction of a
basic vector in three dimension. This property, together with
that the ratio of the diagonal lengths of Ag and Og is 3, makes
the expansion ratio of the three—dimensional Penrose transforma—
tion large. Accordingly, some regions with high symmetry appear
in three—dimensional case. After all, the property of three-
dimensional Penrose transformation necessarily differs from the
original one in two—dimension. The model corresponds to the ideal
*quasi-Bravais—lattice’ with the _highest symmetry in 3-D.

The Ae—rich parts in A * and 06 compose a ’flower
dodecahedron’ shown in Fig.l?. [t aléo corresponds to the
limiting form in [G] in Table 2. Twenty A®’s arrange icosahedral-
ly with their principal vertices at the center. From physical
point of view, this structure is supposed to be the origin of
stability of a quasicrystal (Ogawa: 1977, Ogawa & Nara: 1979,

The comparison of the present model with the experiments in
Al-Mn alloys are given in Hiraga $ Hirabayashi (1986) and
Takeuchi & Kimura (1886).
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Fig. 11 *Flower Dodecahedron’; views along 5—, 3- and 2-fold axis,
where the wedges are outward from the center of a *flower’.
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APPENDIX THE COORDINATES IN SIX-INTEGER REPRESENTATION

The Cartesian coordinates of six quasibases a-B8—7r—§-n-f are
a=(p,q,0),8=C0,p,q),r=(q,0,p),5=(-q,0,p),n=(p, —q,0),£=C0, p, —q
where p=/(1+t)/2 and q=/(1-t)/2 with the relations,

p=Tq, pq=p®-q*=t, a+f+r=c? &L,
E=—a+r L @B+, n=-B+r L G+a), L=— r+r L @+B).

The Coordinates of Quasilattice—-Points in A Skeleton of AG*

(000000) (100000) (010000) (001000> (011000) (101000> (110000> (1110005
(222000) (222100) (222010) (222001) (222011) (222101 (222110) (222111
(333111) (433111)(343111)(334111)(344111)(434111) (443111) (444111>
(111100) (111011)¢211001> (121001)> (112100) (122100) (212010> (221001>
(111010) (111101)>(211010> (121100> (1120105 (122110> (212011> (221101
(111001) (111110>(211011>(121101> (112110> (122101> (212110> (221011
(211000) (121000)> (112000> (122000) (212000> (221000>
(233111) (323111)>(332111) (322111) (2321115 (223111
(333110) (333001) (233100 (323010) (332001) (322010> (232001) (223100
(333101) (333010) (233101)> (323011) (332101) (322001) (232100) (223010
(333011) (333100) (233110) (323110) (332011 (322011> (232101)> (223110)
(111711 C1111T1) C1111171) (222200) (2220205 (222002)
(211T11) (1211T1> (112117) (232200) (223020) (322002>
(221T11) (12217T1> (212117) (223200) (322020) (232002
(212T711) (221171> (122117 (233200) (323020) (332002
(222T11) (222171) (2221171) (333200) (333020) (333002>
together with either of the following for sets,
[(122010) (212001) (221100) (223011) (232110) (32210111
[(122001) (212100) (221010> (223101) (232011) (32211051,
[(122010) (212001) (221100) (223101)> (232011 (32211051,
or [(122001)(212100)> (221010> (223011 (2321105 (322101>1.

488



Penrose Transfomation and Quasicrystals

The Coordinates of Quasilattice—Points in A Skeleton of 06*

(000000> (100000> (0100005 (001000> (0110005 (1010005 (110000> (111000)
(000100> (100T00) (010100> (001100) (011100) (101T700) (110T00> (111T00>
(000010> (100010> (0100T0> (001010) (0110T0> (101010> (1100T0> (1110T0)
(000001> (100001> (010001> (00100T) (01100T) (101007) (110001) (11100T)
(100T10) (0100T1> (00110T> (0111T0> (10110T> (110T10)
(100701) (0101T0) (00101T> (01110T> (101T10) (1100T1)
(100711> (0101T1> (001117> (0111TT> (101T1T> (110111
(200710) (020071) (002101> (11117T0> (1T101T> (11T101)
(200701) (0201T0) (002017T> (T111071) (1T1T10) (11T0TLD
(200711) (0201T1) (002111 (T111TD) ATITID AA1TITD
(200210) (020021) (0062102) (111210> (111021) (117102
(200201) (020120) (002012) (111201 (1T17T20) (117012
(200211 (020121) (002112) (T112T1) (1T1T21) (117112
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