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New Optimality Theory in Nature
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Various optimal shapes can be determined by making a certain
objective function maximum or minimum and the optimal design in
engineering is such a typical example. In the present paper, in
the light of the concept of stability, a new general optimality
theory for nonlinear nonequilibrium processes in nature will be
proposed only through the first and second laws of thermodynamics
and the existence of fluctuation in the natural world and then
some important phenomenological observations in the field of life
science will be explained as the examples of application of this
new theory.

INTRODUCTION

The idea that nature pursues economy in all her working is
one of the oldest principle of theoretical science from the time
of Greeks to the present day(Rosen:1967). In other words, this
idea is considered to mean that nature prefers optimality in all
her economical working.

In thermodynamically equilibrium processes, we have already
had Gibbs'general variational theory, which has greatly contri-
buted to understanding the classical equilibrium phenomena of
physics. On the other hand, in nonequilibrium processes, we have
not yet had such a useful variational theory. This fact makes it
difficult for us to understand the evolution of nonequilibrium
phenomena in nature.

However, we have the following phenomenological observations
for vital phenomena, which are typical examples in nonlinear
nonequilibrium phenomena in natute. Roux asserted that all the
living things produced their bodies from the minimum quantity of
materials, operated their vital phenomena in the most effective
way and hence were considered to be subjected to the minimum or
maximum principles(Takeda:1983). Moreover, Lotka for the first
time investigated the relationship between energy conversion and
living things systematically and recognized the similar regularity
to Roux's observation(Takeda:1983). Such a property in living
things is called teleonomy(Monod:1971). The above observations
imply that living things have the optimal functions and shapes
for their activities in their environments and give us very deep
overtone for the formulation of some general optimality theory by
which the pattern formation and morphogenesis are analyzable.

Aoba, Aramaki, Sendai 980 Japan
593



NEW OPTIMALITY THEORY IN NATURE

In addition, as is suggested by Gibbs' theory and the well
known principle of minimun potential energy in the elasticity,
etc., it is considered that the maximum or minimum property is
often the counterpart of stability.

In the present paper, in the light of concept of stability,
a new general optimality theory for nonlinear nonequilibrium
processes in nature will be formulated only through the first and
second laws of thermodynamics and the existence of fluctuation in
the natural world and then some theoretically unresolved problems
in the life science will be explained by application of this new
theory.

BASIC CONCEPT FOR FORMULATION OF NEW THEORY

Here, based on the well known concept of stability, the non-
equilibrium phenomenon is considered below.

First of all, let us begin with calling to our mind the
definition of stability: if a nonequilibrium phenomenon to which
any infinitesmal perturbation is applied and does not evolve into
some other nonequilibrium phenomenon qualitatively different from
the one before the application of infinitesmal perturbation, the
nonequilibrium phenomenon is stable.

It is noticed that the founders of the thermodynamics in the
19th century had not yet recognized the existence of fluctuation
in the natural world. However, since the Einstein theory of
Brownian motion, the existence and importance of internal fluc-
tuation which stems from the thermal molecular motions and exter-
nal fluctuation from the outer world have gradually been recog-
nized especially in nonlinear nonequilibrium phenomena. It is
considered that the fluctuations play
a role of the above mentioned
perturbation in all nonequi-
librium phenomena and so
the nonequilibrium phenomena
with no qualitative change
for a finite length of time , fluctuating
in spite of the existence potential path
of fluctuations, which we wall
can often observe, should
be stable by the above the most
mentioned definition of probable
stability. Thus, the defi- path
nition of stability implys
the existence of potential
wall governing the retur- A
nability of fluctuating
path as illustrated in c
Fig.1, which shows an D
example of a frequently
fluctuating nonequilibrium
phenomenon.

It is considered that
the maximum or minimum t
property of physical phe-
nomena results from the Fig. 1
potential wall governing
the returnability in the

F(89)

fO Y dg
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definition of stability irrespective of the constitutive equations
in each individual natural phenomenon and is the counterpart of
stability.

In addition, all the related energy including the dissipa-
tive energy through fluctuations should be subject to the first
law of thermodynamics and also we pay attention to the fact that
if microscopic fluctuations are taken into consideration, the
macroscopic physical laws become statistical like the Langevin
equation derived from Newton' second law of motion.

NEW OPTIMALITY THEORY IN NATURE

Let us formulate a new general optimality theory for nonlin-
ear nonequilibrium processes through the first and second laws of
thermodynamics and the existence of fluctuation. For simplicity,
let us use the Eulerian descrlptlon referred to rectangular
Cartesian co-ordinates 1(:L 1,2,3) and consider a nonequlllbrlum
thermodynamical system. The f1rst law of thermodynamics in the
local form is written as

pe = oljdlJ + qi i v PT (2.1)

where dij = (Vi,j + J l)/2 (2.2)
and o, &, Oij' qi' r and v, are the density, the internal energy
density per unit mass, the stress tensor, the heat flux vector,
the heat radiation per unit mass and the velocity vector respec-
tively and the superposed dot denotes the material derivative.
The rate of total specific entropy S is composed of the rate of
entropy production ;S which results from a nonequillbrlum phe-
nomenon in the system and the entropy flux S which flows into or
out of the system.

S=,8+ 8 (2.3)
where S is deflned in this case by
Pe S = (a;/8),; + o(x/0) (2.4)

and 6 is the absolute temperature. Then, the second law of thermo-
dynamics is expressed as

;820 (2.5)

Referring to Eq.(2.4), paying attention to the relationship between
the rate of entropy productionis and the physical gquantities in
Eg.(2.1) such as dimension and ‘combining Eg.(2.1) and (2.5), we
have

peis z pe - (cijdij ta; g+ pr) (=0) (2.6)
or peis z oijdij +4y,4 + pr - pe (=0) (2.7)
It is noticed that these inequalities essentially consist only of
first and second laws of thermodynamics as is clear from the form
of them.

Here, let us consider the consistency of the inequalities
(2.6) and (2.7) with the above mentioned thermodynamics. From the
inequality(2.7) and Eg.(2.4), we obtain

p(;8 - 8+ e/0) - 0;5d;4/0 + q; (8 . zo0 (2.8)
but, this 1nequa11ty is contradlctory to the following Clausius-
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Duem inequality derived from Egs.(2.1),(2.3),(2.4) and (2.5).
. N . -1

p(iS + es - e/8) + Oijdij/e - qi(e ),i 20 (2.9)
On the other hand, the result obtained from Eq.(2.4) and the ineqg-
uality(2.6) is consistent with the inequality(2.9). Thus, the com-
bined form of Egs.(2.1) and (2.5) is limited to the inequality
(2.6). In the preceding consideration in this section, the micro-
scopic fluctuation is not taken into account.

Next, let us consider the effect of the microscopic fluctua-
tion in nonequilibrium phenomena below. As explained in the
previous section, the founders of thermodynamics had not yet
recognized the existence of fluctuation in nature but, at the
present time, the existence and importance of fluctuation are
sufficiently recognized. Thus, it is considered that all the con-
ventional macroscopic physical laws such as the first and second
laws of thermodynamics are statistical if the effect of micro-
scopic fluctuation is taken into account but in stable states,
usually, neglecting the meaningless microscopic fluctuation like
a kind of noise, we just describe the physical laws by use of the
most probable or average values to avoid unnecessary complexity.

However, as explained in the previous section, in nature the
fluctuation plays a role of perturbation in the definition of
stability and so the fluctuation is very important for the exam-
ination of stability in nonlinear nonequilibrium phenomena.

Here, let us introduce the microscopic fluctuation into the
first law of thermodynamics(2.1) in the conventional macroscopic
description and rewrite Eq.(2.1) for a fluctuating state as

F(Gg) = pe - (Oijdij + qi,i + pr) (2.10)
where dg denotes some perturbation from the path with no fluctua-
tion which is included in various physical quantities in the right
hand of Eq.(2.10) and F(89) defined by Eq.(2.10) is called the
fluctuation function. It is noticed that Eq.(2.10) is the descrip-
tion for the first law of thermodynamics in a fluctuating state
and along the most probable or average path ACD with no fluctua-
tion in Fig. 1, by virtue of the first law of thermodynamics(2.1)
in the conventional macroscopic description, we should have

F(0) = pe - (oijdij + qi,i + pr) =0 (2.11)

In the following, let us consider the property of F(5g) in a
fluctuating state. As explained in the previous section, in spite
of the existence of fluctuation the nonequilibrium phenomenon is
frequently stable in nature, from the definition of stability this
fact means the dissipation of fluctuating energy and further,from
the viewpoint of statistical mechanics, the dissipation of energy
is considered to result from the randomization of regular direc-
tion of a energy flow through the fluctuation. In addition, though
there always exist fluctuations, the nonequilibrium phenomenon
with negative rate of entropy production has never observed since
the establishment of the second law of thermodynamics. Thus, the
second law of thermodynamics(2.5) is still valid for a fluctuating
state. It is noticed that the relationship between the right hand
side and the left one of the inequality(2.6) essentially depends
only on the second law of thermodynamics (2.5) and so the inequal-
ity(2.6) is considered to be applicable to a fluctuating state.
Combining the inequality (2.6) and Eg.(2.10), we have

p8,S z pe - (054854 + d4,5 * pr) = F(8g) (2.12)
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Requiring that even if any internal or external perturbation such
as a fluctuation acts upon a nonequilibrium phenomenon, the rate
of entropy production should always be positive, the following
thermodynamical variational inequality is obtained.

pe - (Oijdij ay g+ pr) = F(dg) > 0 (2.13)
It is noticed that we have selected the case of positive rate of
entropy production from two possibility in Eq.(2.5), i.e. posi-
tive rate or zero and as long as the above inequality holds, the
possibility that the rate of entropy production becomes negative
or zero is completely denied through the inequality(2.13),i.e.
the rate of entropy production is always positive. This fact
means that the available energy and fluctuating one in the non-
equilibrium phenomenon are always dissipated and therefore this
phenomenon is stable.

Furthermore, considering the first law of thermodynamics
(2.10) in the microscopic description along a fluctuating path
ABD in Fig. 1 under the condition(2.13), we have

AFAB + AFBD =0 (2.14)

This fact is closely related to the translational symmetry and
means that Egs.(2.10) and (2.13) are consistent with the first
law of thermodynamics(2.1) in the conventional macroscopic des-
cription. Combining Eqg.(2.11) and the inequality (2.13), we get

pe z Oijdij + qi,i + pr (2.15)
In the following, we consider the case that the rate of
entropy production is always zero:

S =0 (2.16)
1

In this case, Eg.(2.12) reduces to
peis = pe ‘(Oijdij + qi,i
Requiring that the rate of entropy production is zero for any
internal or external perturbation such as a fluctuation, we have
pe - (054d;y + q; 4 * Pr)= F(dg) =0 (2.18)
This equation expresses that the potential wall for fluctuation
is flat, means that a fluctuation which has once arised continues
to exist without growth or decay and corresponds to the marginal
state of stability.
Finally, let us consider the case that the rate of entropy
production is always negative in a fluctuating state. However,
the nonequilibrium phenomenon satisfying this condition has never
been observed historically though there always are fluctuations
and so such a phenomenon is considered to be unstable and unreali-
zable in nature. So, we discuss nothing further for this case.
Now, let us turn our attention to the formulation of global
form. Denoting the body force vector and the surface traction
vector by f. and ty respectively, the equation of conservation
of mass and the equations of balance of momenta are written as

+ pr)= F(8g) (2.17)

o + pvi,i =0 (2.19)
Oij,j + fi = pvy (2.20)
and the boundary conditions:
0..n; = t, on 9V (2.21)
ijd i o

597



NEW OPTIMALITY THEORY IN NATURE

vy o= vy on aVV (2.22)

are also specified. Integrating the inequality(2.6) over the
volume V of the system, using the Gauss-Green theorem, the equa-
tions of balance of momenta(2.20), the relation between deforma-
tion rate tensor and velocity vector(2.2) and the boundary condi-
tions (2.21) and (2.22) and then giving the similar consideration
to the case of Eg.(2.15), we obtain

’
K+EzZW4+0Q (2.23)

where K = &,pvl&idv (2.24)
E = [ pedv (2.25)

W= [ fv.dv o+ by, t,v,ds + e, t,v,ds (2.26)

Q = fav g;n,ds + fv prdv (2.27)

It is notice that the signs of inequality and equality in Eq.
(2.23) hold for any fluctuating state and the most probale or
average one respectively. We call the right and left hand sides
of Eg.(2.23) active and passive powers respectively. Let us
consider Eg.(2.23) in more detail. If the left and right hand
sides of this equation take the most probable value and a fluc-
tuating value respectively, we have

. . *
[ K+E]1 zW+2Q (2.28)
where [ K + E ]* expresses the most probable value of [ K + E 1.
Eqg.(2.28) is rewritten into the following equivalent form:
. -« %
[K+E] =[w+01] (2.29)

On the other hand, if the right and left hand sides of Eqg.(2.23)
have the most probable value and a fluctuating one respectively,
we get

K+B 2[wW+o0l (2.30)

where [ W + Q ]* expresses the most probable value of [W + Q].
Eg.(2.30) is rewritten into the following equivalent form:

[I.<+].E:]min.=[W+Q]* (2.31)

By the first law of thermodynamics in the conventional macro-
scopic description, the most probale values of the left and right
hand sides of the inequality(2.23) should be equal:

. . % *
[ K+E] =[W+ 0] (2.32)

Therefore, from Egs.(2.29),(2.31) and (2.32), we have
[ K+ E ]min. = [ W+ Q ]max. (2.33)

This equation means that the active power and the possive one
compete each other through fluctuations and as the result of it a
cooperative or harmonic state in the macroscopic sense is formed.
In addition, it is noticed that as is clear from Eg.(2.18),
we cannot expect the maximum or minimum property for the macro-
scopic solution of physical phenomena in the marginal stability.

APPLICATIONS OF NEW THEORY TO LIFE SCIENCE

First of all, we should pay attention to the fact that all
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the stable nonequilibrium phenomena are subjected to the first and
second laws of thermodynamics, the fluctuation always exists in
nature and therefore the results obtained from the present theory
which is derived through these two laws and the effect of fluctua-
tion ought to be common in all stable nonequilibrium phenomena.
Now, let us consider many biologists' belief(Katchalsky &
Curran:1965) that the evolution of living things dissipates the
least energy. This belief is eqivalent to the fact that living
things operate in the maximum efficiency and is deeply concerned
with Roux and Rotka'observation. The Helmholtz free energy per
unit mass is defined by
$ = e - 88 (3.1)
Substituting this equation and Eq.(2.3) into Eg.(2.6) and then
giving the similar consideration to the case deriving Eqg.(2.33)
from Eg.(2.6), we have . . .
[-K - &,p(¢ A+ 8S + eeS)dv + &lfividv + %v tivid%
+ fav t.v.,dv + fquinids + IV ordv Ipax. = [fvpeis Imin.
This equation expresses that a natural phenomenon evolves towards
the direction in which the dissipative energy is minimum and is
consistent with the above mentioned many biologists'belief.
Denoting the rates of total input and output energy includ-
ing the heat energy by V%_and WO , rewriting Eq.(2.23) by use of
them

(3.2)

(K + E)/W, 2 (W, - W_)/w; (3.3)

and then giving the similar consideration to the case deriving Eq.
(2.33) from Eq.(2.23), we obtain
R+ E)/W; ., = LWy - Wo)/wi]max. (3.4)
where, it is noticed that W, and W_are positive. (W; - W) /W5 is
the definition of efficiency itself and the right hand side of the
above equation expresses that a nonequilibrium phenomenon spontane-
ously operates in the maximum efficiency. In addition, recently the
above mentioned many biologists'belief has strongly been supported
through numerical simulations by Nishiyama and Shimizu(1981).

Next, let us consider Lotka's phenomenological opinion based
on his ecological observation in nature(Lotka:1945,1957) by appli-
cation of the present theory. Thruogh his deep systematic obser-
vation in nature, Lotka recognized that there were two opposing
tendencies in nature i.e. a promotion and a retardation of dissi-
pative process which were going on side by side. In other words,
the former is the tendency that the cosmic effect of the scrimmage
for available energy increases the total energy flux or the rate
of degradation of the energy received from the sun and the latter
is the tendency that greater efficiency in utilizing energy, a
better husbanding of resources and hence a less rapid drain must
work to the advantage of a species talented in that direction.
Lotka also explained that natural selection tended to make the
flux through the system a maximum, so far as compatible with the
constraints to which the system is subject. It is considered that
the maximization of energy flux through the system and the con-
straints to which the system is subjected correspond to the former
and latter tendencies respectively in the above explanation.

In the following, let us consider the relation between
Lotka's opinion and our optimality theory. Rewriting Eg.(2.33) by
use of wi and wO , we have
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K+ El ;= [W, - W1, (3.5)

The right hand side of Eg.(3.5) explains the former tendency that
the energy flux through the system or the rate of degradation of
the energy received from the sun is maximum of the permissible
energy flux. On the other hand, the left hand side of Eqg.(3.5)
expresses that the rate of change of the sum of kinetic energy
and internal energy consisting of the Helmholtz free energy, the
entropy production, etc. of the system concerned is minimum of
the permissible rate and this minimum rate of change retards the
energy flux through the system. This fact corresponds to the
latter tendency in Lotka's opinion. Thus, it is considered that
Eqg.(3.5) well explains two opposing tendencies in nature which
were stated by Lotka.

CONCLUDING REMARKS

A general theoretical foundation has been given for the idea
that nature pursues the optimality in all her economical working.
As is clear from the formulation procedure, the range of applica-
bility of the present theory is equivalent to that of the first
and second laws of thermodynamics except the case that the rate of
entropy production is zero and therefore, this theory is consid-
ered to explain the greatest common property in stable natural
phenomena. In addition, this optimality theory has already been
applied to various kinds of problems (Niiseki:1981,1982,1986)
besides those of the life science explained here.
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