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‘A Trip 1in Julia Space' is ah animated color video film
composed of a collection of computational fractal images which
represent Julia sets. They were computed Dby using simple
non-linear iterative processes. One section of the film
demonstrates the continuous development of uncomplicated set
boundaries 1in the complex plane into those highly complex
fractal images which are known since Mandelbrot. The continuous
change of the set boundaries' complexity is due to a continuous
change of a process parameter. The images give the impression
of being animated by continuously and simultaneously vrotatinyg
the color assignment table for all pixels. The filwu sequences
were photographed from a monitor screen in real-tiiie.

1. Introduction

It was discovered by Mandelbrot that Julia sets of the
non-linear process z --> z?2 + ¢ lead to fractal boundaries
in the complex plane (Mandelbrot 1980). This paper reports on
the extension of the quadratic process z --> z? + ¢ to
z --> z™+ «c, where m is a real-valued variable, and on a
variation of it. The morphological change of the resulting maps
is shown as m is varied over a range of values. Two images of
another structurally different process are also presented.
Finally, a simple technique for animating such images is briefly
described.

2. Morphological change of maps of the non-linear process
z-->z™+ cC

First we consider the non-linear quadratic function

Zas1= 22 4+ C (1)
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Morphological Change of Complex Boundaries

where Yn complex variable
= const. complex constant

. 09}

P +
{0,1,2
This function was first studied in detail by the mathematicians
Julia and Fatou, and was recently brought back to our attention
by Mandelbrot. If we choose the initial value zZy = Xt i:V¥,
and compute z, by using the above transformation, then in turn
use z, as input and compute z, and so on, we get a series of
complex numbers Zg == .4fgaT 5dnnCe Citineianod 2Bb Broasie s The
values of these numbers will depend on the initial value zq and
the complex constant c.

For a given ¢, there are initial wvalues for which the
average modulus increases gradually and eventually tends to
infinity as the number of iterations tends to infinity. That Iis
not always the case. For the same complex constant c, but some
different initial wvalue 2z, the computed points map onto
previously computed points (or at least onto points which lie in
the neighborhood of previous points). Interestingly. z, will not
tend to infinity, as the number of iterational steps tends to
infinity. Fig. 1 provides an illustration of that. Please: :note
that :in- - Fig. ls. the points-are;connected by striaight Lines to
show their relationship with each other.

Stable configurations of this Kind

are sometimes called ‘strange
attractors’, while WMandelbrot
recently prefers to call them
‘fractal attractors’ (Mandelbrot

1983). The presence of attractors
suggests a search for all initial
values zg, for which they exist. It
is also reasonable to record the
number of iterational steps needed to
reach a preset modulus B of 2z, for
all zo. (B can be viewed as lying in
the 'vicinity' of infinity). This
method has been used by Peitgen &
Richter :61985).and -others: Whenever
the value (x2 + y2) exceeds B for a

Fig. 1 : Attractor given initial value z4,

n (e.g., the number of iterational
steps needed to reach B) is assigned to its imitial s valueoiZ, .
Hence, the domain of initial values is mapped to the domain of
iterational steps needed to reach the modulus B. This domain of
iterational steps can be charted by using a color code to
represent the number of Iterational steps. By doing so, the
plane will be covered by patches of different n (or colors): for
the sake of simplicity, these patches are <called n-patches in
this paper. A typical map looks like the one in Fig. 15 (top
right of Plate 3).

The color code that was used in the case of Fig. 15 s
displayed at the bottom of the image. The colors to the left
correspond to low numbers of iterational steps, while those to
the 11ig9ht correspond to high numbers of iterational steps. In a
region about the origin of the complex plane, the boundaries
between n-patches are fractal. They can be thought of as being
fractally deformed circles. The black patches include those
initial wvalues for which there exists an attractor, but not all
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of the black area points are ‘attractor points': this is due to
the fact that n must be restricted to a finite value for
practical purposes.

While the non-linear quadratic function has been studied
extensively, very little is Known about the function

Zat1= Zm + C ; m={R 1 1.12, 1.14, ... , 1.98}

with (x3 + y2) > B as condition (2)
€.9., using a real-valued exponent m instead of '2'. In
general, this is the case of a multi-valued function, because of

z™= r"exp(¥-m+ 2Tk-m ) (3)

where r : modulus of z

¢ : phase angle of z
k=20, 1, £ 2, £ 3, ....

Usually, branch cuts are introduced to convert multi-valued
functions 1into single-valued ones, but for the sake of comparing
the cases of different (real) m-values that procedure is not so
useful, since the number of needed branch cuts differs from m to
m , and in some cases the number of branch cuts may become too
high to be handled efficiently. The easiest procedure therefore
is to further restrict the function to its principal value, e.9q.
to k = 0. Fig. 2 to Fig. 14 are maps obtained by this method.
As described in the case of m = 2, the images have been computed
using the same iteration method and the same constants c and B.
For small m, the Dboundaries between n-patches are relatively
simple and unspectacular. As m 1is increased, they becoiie
"rougher"”, while, like in the case of m = 2, self-similarity
can be observed. The morphological change of the images with
increasing m is continuous and quite naturally leads to the case
m = 2. Global symmetry can not be observed, although their may
be local ones in restricted regions. For m<« 1.5 there don't
seem to exist attractors other +than infinity, although for
1.5 < m < 1.96 attractors other than infinity do exist (black
n-patches surrounded by lighter ones). Unlike the attractor one
can observe for m = 2 (whose points lie on a polygon with 11
vertices for ¢ = 0.33 + i 0.043, see Fig. 1), the attractor
(other than infinity) in the case of m # 2 1is a mere point and
seems to be located in the 4th quadrant for all m's. The
attractor-regions appear to be connected, and their centers are
located on logarithmic spirals. For 1.86 & m < 2.0 the
Process experiences severe changes since attractor-regions (for
other-than-infinity-attractors) disappear momentarily and
reappear for m = 2 (see Fig. 13 and Fig. 14).

For the series of images presented in Fig. 16 to Fig. 23,
basically the same non-linear process was used, but with an
additional restriction. Whenever a mapped value ended up in the
left half of the complex plane (negative real part of z.), its
phase angle was advanced by T (o +W), e.g., the point
symmetric to the origin in the right half of the complex plane
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was used as the next entry value to the process. For all the
resulting images, point symmetry with respect to the origin can
be observed. When beginning with low-valued m's and gradually
proceeding towards m = 2, the boundaries between n-patches first
look very simple and similar to elements of Euclidian Geometry,
but gradually become rougher, while displaying self-similarity,
and finally evolve into the 1image of Fig. 15 (m = 2). The
morphological development of this series of maps 1is also
continuous. Attractor-regions (other than infinity) were not
found.

3. A different process

The following process leads to the images shown in Fig. 24
and Fig. 25.

Zpyy = Xn+l+ i'yn+l; (4)
Xa41= 'y ¥ COSCY¥, ¥ m) + P;
Yoe1 = I'p % SInCP, ¥ m) + 4,
m
where 1, (x2 +y2 )2

Hou

P tan( yn/ Xn)

In the center of the complex plane a star-shaped region of
n-patches, that appear randomly distributed, can be seen. But
at the same time, those patches also appear to be subjected to
an ordering force, similar to the well-known images of
iron-powder scattered at random in a magnetic field. The
n-patches more distant from the center are larger and display
Euclidean-type boundaries. Quite interestingly, a modest change
of scale does not seem to affect the nature of the distribution
in the center, judging from close-up images by the scale factor
1:10. The question, whether the geometry of these images can be
called ‘fractal', must be left unanswered for the time being.

When m is wvaried between m = 1.0 (Fig. 24) and m = 2.7
(Fig. 25), the resulting images also display a continuous
morphological development. (The complete series of maps is not

included in this paper).

4. On the experimental video film 'A Trip in Julia Space’

Most of the motifs used in the film were taken from the
above described series of images. For a minority of others,
different values of the complex constant ¢ were used. Close-up
images were also included. The first part of the film shows the
morphological development of maps resulting from the described
processes. The colors were mixed 'intuitively' and entered into
a color assignment table. It was mentioned Dbefore, that the
n-patches have been <color-coded for the purpose of charting
them; therefore any color combination can Dbe used freely for
making them visible. Since the n_patches of the images are made
visible (and distinguishable) by assigning specific colors to
each of the n-values, their appearance changes when the color
assignment changes. Continuous changes in appearance can be
achieved by ‘'rotating® +the assignment table within certain
limits. Therefore, all that is needed to convert this type of
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fractal static 1images into moving pictures is a high-speed
graphics system. Every map was computed individually and then
‘animated® by a color-change routine. All video-sequences were
photographed from the monitor screen in real-time. For
computations and high-speed display Apollo Domain DN660 graphic
work stations were used.
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PLATES
(printed on Plate VII at the opening of this volume)

Series of maps resulting from process Eq. (2) and Eq. (3) with
k=0 :

On PLATE 1
Fig. 2 ¢ m= 1.10; Fig. 3 ¢ m = 1.20:
Fig. 4 ¢+ m = 1.30; Fig. 5 ¢ m = 1.40;
Fig. 6 : m = 1.50; Fig. 7 ¢+ m = 1.60;
On PLATE 2
Fig. 8 : m= 1.70; Fig. 9 : m= 1.80;
Fig. 10 m = 1.90; Fig. 11 ¢ m = 1.82:
Fig. 12 m = 1.94: Fig. 13 ¢ m = 1.96;
On PLATE 3
Fig. 14 ¢ m = 1.98; Fig. 15 ¢ m = 2.00;

Series of maps resulting from process Eq. (2) and Eq. (3) with
k=0 and the additional restriction ®,:= %, + T if X<, < 3L:
On PLATE 38 :

Fig. 16 : m = 1.143 Fig. 17 : 1w = 1.18;:
Fig. 18 ¢ m = 1.20; Fig. 19 ¢ m = 1.30;
On PLATE 4
Fig. 20 ¢ m = 1.50; Fig. 21 ¢ wm = 1.70;
Fig. 22 ¢ m = 1.90; Fig. 23 ¢ m = 1.88;
(Fig. 15 ¢ m = 2.00)
Japs resulting from process Eq. (4) @
On PLATE 4
. Fig. 24 : wm = 1.00; Fig. 25 : wm = 2.70;

For all plate figures except Fig. 24, the same color code was
used, but to a certain extent coloring.inaccuracy was inevitable
due to the photographic copying process. All figures display
the range -2.0 < Re(z) < +2.0 and -1.5 < Im(z) < +1.5 of the
Gaussian complex plane.
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13-5

Q: I would like to know how you do your color assignment. Is
there any rule for ass1gn1ng color? And also about the back
ground music: What is it? (N. Funakubo)
A: The meaning of 'color' in connection with the fractal maps

used for the film is being discussed in my paper. Color
assignment to "n-patches" is principally arbitrary; there is no
rule. As for our movie, the color assignment was chosen to be
visually attractive. The music is originally by [KECAK PELIATAN
OF BALI], Indonesia, and was adopted to parts of the film by
using effect such as echo etec.

Q: How did you make the rhythm of your motion picture? How
did you take the time scale? Did it depend on your algorithm?

(Y. Ito)

A: The visual rhythm of our motion picture depends on several
factors: -on the morphological structure of the used map which in
turn depends on the morphological process.
-on the color coding of "n-patches" (color assignment)
-on the speed and direction of the color assignment
table's rotation.
The time scale was chosen arbitrarily and varies from film
sequence to film sequence. In some instances, the scale also
varies within a sequence.
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