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Classical crystals are not the only kind of ordered
assemblies formed by atoms and molecules. Recently a body of
observations and of theory has arisen with the discovery of
quasi-crystals, highly ordered textures, some with icosa-
hedral symmetry impossible for a crystal. Non—-Euclidean
crystallography where atoms are arranged in curved manifolds
has also been extended from helices, through periodic
minimal surfaces, to packings in curved 3-dimensional space.
Still further generalisations will be considered.

INTRODUCTION

Classical crystallography has expanded to include the

analysis of all kinds of ordered arrangements of atoms.

Because of the simplicity of their Fourier transforms, which

the Bragg diffraction experiment samples, regular crystals have
predominated. But even glasses are not totally random, although
their regularities are difficult to quantify, being statistical in
nature. The positions of large numbers of atoms, in both crystals
and glasses, may be described by very few parameters. Most
generally, a crystal might be defined as an arrangement of atoms,
the description of which is much smaller than the assembly itself.

Local interactions determine long range order so that ideas

of cellular automata are relevant. The classical 230 space groups
should not be regarded as picture frames of symmetry elements
which, in the current usage of solid state physics, are
"decorated" with atoms, but as resulting from the local
interactions of atoms which shake down into an accessible minimum
energy configuration.

DIMENSIONALITY

Since the everyday world has three dimensions, it is easy to

assemble and to edit structures (such as this text) which are
linear sequences, since there are two other dimensions available
for manipulation. Characteristically, informational structures are
linear. Their primary structure, the sequence of units, means that
units have a coordination number of 2. Secondary and tertiary
structure may thus arise on folding in three dimensions.
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In two dimensional manifolds there is less mobility,
although there is one more dimension into which the manifold may

be curved.

A major line of development was initiated by asking how
regular pentagons may be packed in two dimensions. There are, of
course, spaces between the pentagons and two strategies may be
adopted for filling these in. The first is to curve the space,
making a regular dodecahedron. The second is to give systematic
rules for filling in the spaces so that we construct in the plane
a hierarchic figure with five-fold symmetry. The 1latter strategy
leads to the Penrose tiling and to a considerable body of theory
which has since developed.

In three-dimensional manifolds editing is difficult and
therefore structures tend to remain locked in a metastable
configuration. However, the same two strategies may be pursued.
Curving space leads to a four-dimensional figure which must be
"decurved" back into the normal space of three dimensions.
Inserting material in the spaces between regular dodecahedra
(which are the three-dimensional analogues of pentagons) leads to
the three— dimensional Penrose tilings.

PERIODIC MINIMAL SURFACES

We examine first two-dimensional <crystallography upon two
dimensional manifolds. In the plane the average coordination
number (CN) of a point in a triangulated network 1is six. The
perimeter of a circle increases as 2 pi r and the area as pi r2
However, if the local mean coordination number of a point is less
than six, then the manifold becomes curved with positive Gaussian
curvature (spherical). The Gauss-Bonnet theorem indicates that
the integral of the curvature over an area is equal to the
spherical excess of the angles. The spherical excess may be
provided by disclinations from some standard configuration (such
as a hexagonal lattice). As is well known, when a hexagonal net is
mapped round a sphere then there must be 12 vertices with CN=5
instead of 6, making a total disclination strength of 12%pi/3.
Such structures are found for example, for the spherical viruses.

If the mean coordination number is greater than six, then
the Gaussian curvature is negative and the corresponding surface
is hyperbolic or saddle-shaped. It was recently realised that such
surfaces can appear in crystal structures on various scales and
the work of H.A.Schwarz and E.R.Neovius in the 1870s has become
topical. More recently, A.H.Schoen (1970) has extended this work
and has shown that there are at 1least 18 periodic minimal
surfaces. These are based on taking the fundamental region of a
space group, the region which is repeated by the symmetry elements
of a space group to fill space, and hanging a soap film across it
so that the film has a minimum surface and is repeated without
discontinuities of first or second derivative. Such surfaces are
minimal and have zero mean curvature, the two principal curvatures
being equal and opposite so that their product, the Gaussian
curvature, is everywhere negative (or zero). These surfaces are
geometrical absolutes, like the polyhedra.

616



Given such surfaces, points can be arranged on them and the
surface can be tessellated into Voronoi regions and in general the
normal operations of geometry can be carried out. Tilings of the
Penrose type, discussed below, can be constructed. There is a
relationship between the fundamental regions in such surfaces and
the arrangement of similar regions in the hyperbolic plane, a
space of constant negative Gaussian curvature.

As regards physical systems, periodic minimal surfaces (or
at least surfaces very similar in topology) can be seen in the
structures of 1lipid films in lyotropic 1liquid crystals, in
silicate cage frameworks, as Fermi surfaces, in mineralised
biological tissues such as the spines of certain sea-urchins and
as zero-equipotential surfaces in ionic crystals. As structures of
soap—-films they are not mechanically stable and further forces are
necessary, Jjust as no stable arrangement of charges can be stable
under electrostatic forces alone (Earnshaw’s theorem).

THREE-DIMENSIONAL MANIFOLDS

Attempts were made (Mackay, 1980) to extend this idea to
three dimensions by examining the packing of points in R3, that
is, on the three-dimensional space which is the surface of a
four-dimensional hypersphere. The ideas was that the curvature
would render unfavourable the normal coordination number of 12 to
be found in for example, face-centred-cubic metals, and provide a
space in which an amorphous structure could be modelled. Since the
space was finite, there would be no need for cyclic boundary value
conditions normally used in computer simulations of a liquid. This
line has been much developed by Sadoc, Mosseri and others. The
space here is positively curved (and consequently volume increases
less rapidly than (4/3)pi r3.

ICOSAHEDRAL "CRYSTALS"

The world of crystallography was startled by the
announcement, in November 1984, by Shechtman, Blech, Gratias and
Cahn (1984) of the experimental observation of electron
diffraction patterns from an Al/Mn alloy which showed full
three-dimensional icosahderal point symmetry. Every crystal
belongs to one or other of the 230 space groups. Each of these
space groups gives rise to diffraction patterns which have the
point symmetry of one or other of the 32 crystallographic point
groups. The icosahedral group m35 is not one of these. Thus, the
material cannot be a normal crystal. The controversy over the
structure has continued for the past year, being much enlivened by
a contribution from Linus Pauling who asserts that the material is
a twinned crystal (for which he proposes a structure).

Such materials have now been categorised as
quasi-crystals. The word quasi-lattice was first defined in 1981
(Mackay, 1981) with reference to the Penrose tiling but the
definition has been appropriated, without acknowledgement, by
Levine and Steinhardt (1984), who altered the emphasis of the
definition. However, both aspects are implicit. Each
quasi-lattice point in an N-dimensional space can be assigned
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integer indices with respect to integer steps on more than N
vectors forming a star. The use of four axes for the hexagonal
system of «crystals 1is a familiar example. Having redundant axes
means that vectors in a particular direction can be described in
more than one way and that integer dispolacements along two or
more axes can produce incommensurate steps along a partiular
direction. It is this latter aspect which Levine and Steinhardt’s
definition emphasises.

NEMATIC ASPECTS

In fact the physical material appears to be a kind of
texture, not with visible grains oriented in different
directions, but on the finest possible scale, where the units are
local coordination polyhedra rather than assemblies of
recognisable unit cells. The Penrose tiling, which is, in
three-dimensions a packing of acute and obtuse rhombohdra (where
all edges are the same and the interedge angle is arctan(2) and
its supplement). Each tile has three pairs of parallel faces and
it 1is possible to envisage a thread passing in at each face and
out at the opposite face. The crossover in the middle may happen
in various ways, but <can be defined. This means that the whole
tiling would be covered three times by 15 threads which are in the
directions of the two fold axes of the 1icocashedron which
represents the overall symmetry. The tiling can also be seen to be
composed of «crinkly layers of tiles with edges perpendicular to
their mean plane. These six layers are perpendicular to the
five-fold axes and their projections comprise the two-dimensional
Penrose tiling. In the plane five threads cross each tile twice so
that the mean spacing of the threads is 5/2 times the cell edge.
Defining one crossover can lead to a consistent definintion of all
others. An example has been constructed by A-M. Honeger of this
laboratory. The six layers cover the pattern three times so that
their mean spacing is twice the cell edge. This fabric gives
literally a very fine texture. The unit cell dimensions have been
estimated (for the Al/Mn alloy) at 4.6 A and together with the
measured density this allows abbut five atoms per acute unit cell.
These are essentially the minimum needed to define thread
directions. It is not intended that this nematic model should be
taken very literally but only as a way in which the topology of
the system may be constructed. It has been shown first by Kramer
that starting from an arbitrary star of vectors tesselations of
space by paralellepipeds can be constructed with a wide variety of
symmetries. The case of icosahedral symmetry where there are only
two different rhombohedra is only the simplest and other tilings
require more than two different tiles. As a byproduct, it follows
that all such tilings can generate thread patterns which represent
very complex weaves. If it were possible to execute these weaves
in fibreglass or carbon fibre then we would have the basis of a
new class of composite materials with nearly isotropic symmetry.

It is clear that the physical basis of the icosahedral
alloys is the production of local icosahedral coordination
polyhedra and the mutual adjustment of such polyhedra to have a
common orientation. The Penrose tiling, in 8o far as it is a
description of the physical structure, must result from the atomic
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arrangement and not vice versa. The local rules would try to
produce clusters of 20 acute rhombohedra with their vertices
meeting at a point (rather than packing by translation as in a
regyular crystal) and, while this can be done locally, the packing
cannot continue. To a considerable extent the obtuse rhombohedra
amy be seen simply as vacancies or dislocations in a tangle of
acute rhombohedra packed parallel to definite directions which
result in the icosahdral symmetry. Where two obtuse rhombohedra
meet there will be room for more atoms which may turn out to be
lying in the shared faces of the obtuse rhombohedra. At present
progress awaits good methods of calculating the structure factors
expected for various configurations.

INCOMMENSURABLE STRUCTURES

Alternatively, working downwards from the observed
long-range order, the structure can be seen to involve
incommensurable structures. This is a field of crystallography of
growing importance where regular crystal structures are modulated
in amplitude or frequency. In this case we may explain the
situation by reference to the structure of pyrite (FeSz).

Pyrite (which is a cubic mineral with the space group Pa3)
can be seen to be a packing of the same acute and obtuse
rhombohedra which occur in the three-dimensional Penrose tiling
but insead of occurring in the irrational ratio of tau (1.618...)
they are in the ratio of 1:1. The acute tile would contain one S-S
dumbell and the obtuse rhombohedron one Fe ion. These tiles are
arranged in alternation as in the structure of NaCl. (V.Elser has
predicted, as a consequenxce of his projection method of
generating the Penrose tiling, a series of cubic structures which
would have ratios of tiles corresponding to every third Fibonacci
ratio. This is the first, with the ratio 1:1 and the alloy
Mgs2(Al,Zn)ss is <close to the next with the ratio of 5:3).

In pyrite the faces of the form (210) are very prominent. If we
take the pair of faces with indices 120 and -1 2 0, then they
intercept the y-axis at regular intervals. Correspondingly, the
pair of faces 012 and 0 1 -2 define spacings of twice this value
on the y-axis. In cubes of pyrite the faces of the form 100 can be
seen to be made up of fine striations due to the intersection of
the face of the form 210. The form 210 is a dodecahedron but not
quite a regular one. The regular dodecahedron would have faces of
the form (tau, 1, 0) and here two incommensurate periods along the
cube axes would be prescribed. We believe that this
incommensurablity can be seen in the corresponding directions in
the the beautiful electron micrographs taken by Hiraga and the
group in Sendai, and by Knowles, Saxton, Stubbs and Greer in
Cambridge.
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13-6
Q: Do you think that there exists n-fold symmetric non-periodic
pattern for every integral n? Can you show the algorithm to

generate the pattern? (T. Soma)

Az Yes. Steinhardt & Levine & others have shown that any star
of > N vectors can generate a tiling in N-dimensional space.
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