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QUASI-STATIC SIMULATION OF LIQUEFACTION PHENOMENA
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Abstract. To investigate the liquefaction phenomena from the microscopical point
of view, the undrained cyclic test on granular materials was simulated by the use of a
new computational method called the granular element method. The test results of
macroscopic quantities were qualitatively similar to the results obtained by usual
tests on real sands. The detailed investigation on the dissipation mechanism gave a
new insight into the deformation characteristics of granular materials. For example,
it was found that the number of contact points which share the dissipation energy in
each loading step is limited and that there exists a tendency that the distribution of
dissipation energy is inhomogeneous when the large pore water pressure arises.

INTRODUCTION

Recently, the granular materials has been studied from the micromechanical
aspects (Satake and Jenkins: 1988). In such approaches, microscopical observations
of the mechanical behaviors of granular systems are required. However, it is hard to
achieve this in actual experiments on sands, gravels or other real granular materials.
On the other hand, experiments on granular models can offer various kinds of
micromechanical informations. As one of the possibilities, the photoelasticity tests
on two dimensional models may be used (Drescher and de Josselin de Jong: 1972).
However, the photoelasticity tests alone are insufficient for the detailed discussion,
even though some kinds of micromechanical quantities are obtained through
elaborative processes. Another approach is the numerical experiments in computers,
which may be the most powerful procedure to study the micromechanics.

As a computer simulated method for granular materials, the distinct element
method has been developed (Cundall and Strack: 1979). The procedure of the
analysis adopted in the distinct element method is based on the finite difference
scheme for solving the Newton’s equation, and the basic equations are uncoupled
sirnultaneous equations. As the stiffness matrix is not taken into account in the final
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equations, the special care should be paid when it is applied to the quasi-static
analyses of dense granular assemblies.

The author developed a new simulation method to analyze the quasi-static
problems of granular materials (Kishino: 1988). The algorithm of this method is
given in the following section. In the latter half of this paper, the result of a
numerical simulation of cyclic undrained test is shown and the dissipation mechanism
in liquefaction phenomena is discussed.

GRANULAR ELEMENT METHOD

The new method presented here is developed mainly for the precise investiga-
tion of quasi-static behavior of granular materials and it is called the granular
element method. In this section the outline of this method is explained.

Basic idea of the granular element method

The granular element method used in this paper is based on the following basic
idea:

a) The numerical model of granular material consists of two types of element.
One is called the granular element which is placed at the inner part of the region.
The other one is called the boundary element which is located along the peripheral
part of the region. The boundary element transmits the external force to the
granular elements.

b) The elements in the model are assumed to be rigid. However, they can
overlap each other. Usually, the amount of overlapping is small enough compared
with the dimensions of granular elements, so that the deformation of granular
assembly is mainly governed by the rearrangement of granular elements.

¢) Only when two elements overlap, a contact force is generated between
them. The amount of contact force depends on springs attached virtually at contact
point. The virtual springs represent the elasticity of grains.

d) For the slippage between elements, the Coulomb’s friction law is assumed,
and the tangential component of contact force can not exceed the limit determined
by this law.

e) To get the equilibrium state, each element is iteratively translated and
rotated according to the contact stiffness matrix determined with respect to the
relative locations of neighboring elements.

The employment of rigid elements and virtual springs is the same idea as in the
distinct element method. However, this method uses the stiffness matrices strictly in
the determination of incremental movements of grains, while the distinct element
method is based on the forward difference approximation of the Newton’s second
law. When grains are packed densely and change their locations quasi-statically, it is
quite natural to use a stiffness method to determine the movements of grains. The
directions of incremental movements determined by both methods do not generally
coincide when a grain moves under the constraint from neighboring elements.
Further, the granular element method requires no damping factors for the stable
conversion to the solution.

The flow chart of the granular element method is given in Fig. 1. As shown in
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the flow chart, the granular element method adopts an iterative procedure. This is
because the iterative procedure simplifies the algorithm of calculation by computers.
The choice of routines in the iterative procedure depends on the boundary condition
as shown in the flow chart. The initial arrangement of granular elements within the
region surrounded by boundary elements can be obtained by applying the granular
element method itself to an original packing. Even if the original packing is artificial
and the equilibrium condition is not fullfilled, the equilibrated state can be attained
through the iterative process.

The detailed explanation which can be applied strictly to the two dimensional
problems is given in the following subsections.

Force-displacement law between elements

In Fig. 2, A and B are the typical granular elements in a two-dimensional
granular assembly and they are in contact with each other at contact point C. The
contact force p acting on grain A has the normal and tangential components;
pr=—p-n and p,/=—p-t. To introduce the formulation with matrices, the contact
force is expressed in a vectorial form; Pc=(pn, p:)é.

Fig. 2. Contact force between granular elements.

The incremental movement of grain A4 with radius r consists of the translation
Ax and the rotation Aw, and it is denoted in a vectorial form; AX=(Ax, Ay, rAw)'.
By this movement of grain A4, the following relative displacement is induced between
grains 4 and B:

AUc = (Aun, Au)é = TeAX (N

where
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is a transformation matrix and 6 is the direction angle of n measured from x axis as
shown in Fig. 2.

The relationship between contact force and relative displacement is assumed to
be represented by a couple of linear springs in the normal and tangential directions
with the spring constants k, and k,. Then, the incremental relationship between
contact force and relative displacement is given by the following equation:

APc = ScAUc 3

where
ks O
Sec = [ 0 ki ]c @

is the stiffness at the contact point C.

When either of the neighboring elements is a boundary element, the stiffness at
this contact point is also defined in the same manner. These linear relationship
between contact force and relative displacement is inevitably lost when the
separation or sliding takes place between elements. As explained later, the non-
linearity in force-displacement relation is taken into account by modifying the
contact forces obtained through Eq. 3.

Fixing force vector

In the granular element method, an iterative process is adopted to get the
equilibrated state of contact forces p and body forces b for all granular elements.
Thus, while the iterative calculation is proceeding, the resultant force applied to a
granular element may not equal zero unless the additional force f and moment m are
virtually applied at the center of granular element as shown in Fig. 3. The virtual

Fig. 3. Fixing force and moment.



162

force and moment which are required to fix each granular element in the
. Jo . . t v e
inequilibrated state, form the fixing force vector; F = ( So Lo L"r_) . By the definition

of fixing force vector, F is equated as follows:
F=Xc TéPc— B &)

where B=(b,, b,, 0)' is the body force vector, and Z¢ stands for the summation over
the contact points on a granular element.

Contact stiffness matrix

The contact stiffness matrix gives the incremental force and moment generated
by the unit movement of a granular element whose neighboring elements are
assumed to be fixed, and it is derived in the following manner.

When a granular element with contact point C is subjected to the incremental
movement AX, the increment of contact force at C is obtained through Eq. 1 and
Eq. 3 as

APc = ScTcAX. (6)

Thus the increment of fixing force vector induced by AX is derived through Eq. 5
and Eq. 6 as the following equation:

AF = SAX )

where S=XcT¢ScTc is the contact stiffness matrix. The contact stiffness matrix of
a granular element is determined with respect to the relative locations of the
neighboring elements and it is revised step by step in the process of iteration.

If only one granular element is allowed to move while the other elements being
fixed, then the fixing force vector can be released by the following equation:

F+ AF=0. (8)

Thus, for the case that detS#0, the incremental movement of the granular element is
determined by the following equation:

AX=-S"F. )

In the next section, Eq. 9 is modified to take into account the simultaneous
movements of the neighboring granular elements.

Releasing of fixing force vector

As shown in Fig. 1, the equilibrium state of granular assembly at each loading
step is attained by releasing the fixing force vectors iteratively. The iterative process
has been adopted because it simplifies the algorithm of calculation, in which the
contact stiffness matrix S changes successively according to the rearrangement of
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granular elements and its determinant sometimes becomes zero.

If the releasing of fixing force vector with Eq. 9 is executed for only one
granular element in one calculation step, the order of releasing affects the results of
analysis. This is because the releasing of a fixing force vector affects the successive
determination of other fixing force vectors. To avoid this, all fixing force vectors, as
well as all contact stiffness matrices, are calculated at the same time with respect to
the last locations of granular elements. Then, the fixing force vectors for all the
granular elements are simultaneously revised toward the complete releasing.

As the determinant of the contact stiffness matrix S can be equal to zero, Eq. 9
should be modified according to the type of singularity as explained in the
following:

a) Inthe case of detS##0, the movement of granular element is determined by
the equation

AX=-aS'F (10)

where a is the modification factor. As the neighboring granular elements are moved
at the same time, the amount of a should be less than 1.

b) Inthe case of detS=0 with no contact point, the movement of the granular
element should follow the motion governed by the Newton’s second law. However,
in the quasi-static problems as dealt in this paper, the dynamical effects may be
neglected. Thus, the granular element is translated gradually in the direction of body
force. As the amount of the translation should be comparable with the movements
of the other granular elements in the region, the incremental movement is given by

B
AX=+B (11)

where the amount of the factor f is usually greater than 1.

¢) In the case of detS=0 with only one contact point, the translation in the
direction of contact normal is determined as in the case a). On the other hand, the
movement in the tangential direction is determined as in the case b) with the
assumption that the tangential component of relative displacement is zero; Au,=0.
Thus, the incremental movement is given by the following equation:

cos#  — sinf
1| . —af-n
AX = sinf cosf (12)
K pb-tl
0 -1 J¢

where o and f’ are the similar constants to « and f. In this case, if the tangential
component of contact force at the contact point is not zero, it is set to zero to allow
the free rotational movement.

d) The case of detS=0 with two or more contact points is limited to the
special case that the tangential stiffnesses at contact points are zero; k,=0. In this
case, by assuming that Aw=0, the incremental movement of the granular element is
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determined as
AX'=—aS'F (13)

where the primed quantities denote the quantities without rotational components.

The incremental contact forces are calculated by substituting AX into Eq. 6.
The contact force obtained in this way should be modified if it is necessary. If the
tangential component p, becomes less than zero, then the value of zero is substituted
into p, as well as p,. Further, when the tangential component p, exceeds the limit
determined by Coulomb’s law, the absolute value of p; is modified as

| pdl = pn tang + ¢ (14)

where ¢ is the friction angle and c is the cohesion.
The iterative calculation is repeated until all the fixing force vectors of granular
elements fulfill the condition expressed by the following equation:

F'F<d (15)
where a is the accuracy having the dimension of the force.

Boundary element

The boundary of granular assembly consists of a set of boundary elements. For
conventional simulations of two dimensional tests, four straight walls may be used
as boundary elements. For the more precise control, boundary elements can be the
elements with the shapes of granular elements as shown in Fig. 4. In any case, the
fixing force vector of boundary element is not equal to zero, but it is equal to the
external force. The contact stiffness matrix of boundary is determined on the basis
of the stiffnesses between boundary elements and neighboring granular elements.

In the following, the procedure for boundary control in the element tests (tests
on specimens to get stress-strain relations) is explained. Usual tensor notation in a

Fig. 4. Example of boundary elements.
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Cartesian coordinate system is adopted for the explanation. In the element tests, the
movements of boundary elements may be regulated through the linear transfor-
mation as

Ax; = ATijx; (16)

where x; and T;; (i, j=1, 2 for two dimensional case) are the coordinates of a point on
boundary element and the transformation tensor respectively, and A attached to
these quantities denotes the increment. For the symmetric part of the increment of
transformation tensor, the following equation holds:

AT = Aey W)

where ¢&; is the strain tensor and the parentheses attached to the indices on the left
hand side denotes the mixing.

The stress tensor o;; is defined on the basis of external work such that the
following equation is fulfilled:

1
AWEXZBﬂAxi=O'ijA8ij (18)

where A is the area of the region and X5 denotes the summation over the boundary
elements to which the external forces f; are applied at the points x;. From the above
three equations, the stress tensor is defined in terms of contact forces as

1
i = = s fix) (19)

where the following equilibrium of moment is taken into account:
EBﬁXj = ZijXi. (20

When the boundary movement is controlled by the strain or the displacement,
the location of boundary element, which is determined at the beginning of each
loading step, is maintained until the granular assembly reaches its equilibrium state.
When the equilibrium state is attained, the external force applied to each boundary
element is obtained by calculating the fixing force vector of the respective boundary
element.

When the boundary movement is controlled by the stress, the fixing force
vector of boundary element is prescribed for each loading step. The difference
between the current fixing force vector and the prescribed one is eliminated by
moving the boundary element according to the contact stiffness matrix of boundary.
The releasing of the fixing force vectors of granular elements causes the changes in
the fixing force vectors of boundary elements, so that the above procedure is
repeated until the granular assembly reaches its equilibrium state.

Usually, these two types of control are mixed. For example, the conditions
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controlled purely by stress should be excluded, because the rigid translation and the
rigid rotation are not determined with the pure stress condition only. On the other
hand, the dilatancy characteristics, which plays a central roll in the mechanics of
granular materials, can not be obtained by the conditions controlled purely by
strain. To derive the dilatancy characteristics, boundaries should be controlled by
the mean stress instead of the volumetric strain.

The strain-controlled shearing test under constant mean pressure is an example
of the mixed type of boundary condition. In this case, the incremental shearing
strain is applied to the boundary elements at the beginning of each loading step, and
the difference between the prescribed and current mean pressures is diminished in
the way of stress-controlled procedure in which the boundary elements are
controlled so as not to generate the shearing strain. After the equilibrium state for
the granular assembly is obtained, further incremental shearing strain is applied to
proceed to the next loading step.

Another example of the mixed type of boundary condition is the stress-
controlled shearing test under constant volume. In this case the movements of
boundary elements are determined by the shearing components in stress tensor and
contact stiffness of boundary. The undrained condition is similar to the constant
volume condition. However, the volume of the region is allowed to change slightly
according to the bulk modulus of water and the isotopic component of the external
stress is shared by the granular elements and the pore water. If the time effect of
seepage can be omitted, the volume change induces the pore pressure immediately.
The effective stress is calculated by subtracting the pore pressure from the total
external stress.

The extent of the movement of boundary element at each loading step should
be restricted to avoid the excessive overlapping between elements and to secure the
smooth transition of the arrangement of granular elements.

Dissipation energy

From the simulated data on locations of elements and contact force vectors at
sequential loading steps, the dissipation energy and the external work can be
calculated easily as follows:

When two granular elements in Fig. 2 are subjected to the incremental
translations Ax and Ax’ and the incremental rotations Aw and Aw’, then the
tangential component of incremental relative displacement at contact point C is
expressed as

Au, = (Ax — AX') - t+rAow + rAw'. 21)

If the tangential component of contact force changes its value by Ap,, the elastic part
of incremental relative displacement is defined as

Au, = X Ap.. (22)

Then, by putting inelastic part as
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Aug = Au; — Aue (23)

the incremental dissipation energy at contact point C is calculated as
Adc = p;Aua (24)

where p, is the average of values for the states before and after the respective step.
The above equation is valid as far as the mechanical change in granular assembly is
slow.

Adding the dissipation energies at all contact points in the whole area A, the
dissipation energy density is obtained as

AD = % Zc Adc (25)

where X¢ stands for the summation over all contact points in granular assembly.
On the other hand, the increment of external work per unit area induced by the
incremental displacement vectors Ax of boundary elements is calculated by

AW = % 2sf-Ax (26)

where X stands for the summation over the boundary elements and the fixing force
vector f is identical to the external force as stated in the section of Boundary
element. The densities of total external work and dissipation energy at a certain state
can be obtained by summing up all the incremental quantities in the preceding steps.

SIMULATION OF UNDRAINED CYCLIC TEST

A simulation of undrained cyclic shearing test was performed on a two
dimensional model shown in Fig. 5. The model consists of three types of discs with
different diameters and each of them has the same total area. The pore was assumed
to be filled with water and the zero pore pressure was assumed in the initial state. To
get this initial state, the incremental isotropic pressure was applied to an artificial
packing of discs until the isotropic confining pressure go was attained. The constants
used are listed in Table 1. The bars in Fig. 5 show the contact force vectors whose
intensities are represented by the thicknesses. In the following, o and o2 denote the
principal stresses in vertical and horizontal directions and are defined as the sums of
pore pressure and effective stresses applied to grains; o, and a,".

The cyclic loading was controlled by the increment of shearing stress (g1—02)/2,
while the mean stress go=(01+02)/2 was kept constant under the undrained
condition. The walls were controlled not to rotate and to move symmetrically with
respect to the central axes in vertical and horizontal directions. The number of
loading cycles was four and each cycle consisted of 40 steps.

Figure 6 shows the relationship between the shearing stress and the effective
mean stress 6,,’=(0\"+02’)/2. The stress-strain relationship is given in Fig. 7. The
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1 cm

Fig. 5. Distribution of contact forces in the initial state.

Table 1. Constants used in the analysis (depth=1 cm).

Diameter of disc 6,9, 12 mm

Initial void ratio 0.26

Weight of disc in water 1.5 x 10° dyn/cm?
Stiffness ko, ki 1x10%, 7x 10" dyn/cm

Friction angle 25°  (between discs)
0°  (between disc and wall)
Cohesion ¢ 0 dyn

Bulk modulus of water
Confining stress ao
Increment of shearing stress
Amplitude of shearing stress
Modification factor

a, o, B,

1 x 10" dyn/cm?
1.5 x 10° dyn/cm
+ 2.5 x 10* dyn/cm
+ 2.5 x 10" dyn/cm

0.75, 0.5, 20, 20

Accuracy a 100 dyn

numbers attached in these figures represent the numbers of preceding loading
steps. If the uneven changes in these diagrams are omitted, they are very similar to
the results obtained by actual tests on sands. The first remarkable changes both
in effective mean stress and in shearing strain correspond to the initiation of
liquefaction, and they are observed during the third cycle. The last part of the
loading path in Fig. 6 exhibits the so-called cyclic mobility. It is naturally observed
from this part that the global friction angle of granular assembly is less than that of
individual grains.

Figure 8 shows the distributions of contact forces at the end of loading step 109
and at the final state. The loading step 109 is the last step before the first remarkable
change in the shearing deformation took place. As shown in Figs. 5 and 8, the
intensities of contact forces decrease as the pore pressure increases. Most of the
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grains have scarcely moved until the step 109, even though rather large pore pressure
has developed. After this step, the grains change their locations in some extent with
the remarkable change in shearing strain. However, as observed in these figures, the
movements of grains do not follow the homogeneous deformation. In the following,
the mechanical inhomogeneity in granular assemblies is discussed in terms of the
dissipation energy.

Figure 9 shows the evolutions of total dissipation energy and total work. The
amount of dissipation energy in this figure was obtained by subtracting the
difference between elastic energies in current and initial states from the total work.
The dissipation energy could be also calculated from Eq. 25, and the incremental
values obtained by both methods agreed in most loading steps. However, there were
some disagreement at several steps where the linear assumption in Eq. 25 failed. It is
observed from this figure that the dissipation energy increases monotonously while
the total work drops down slightly at the steps after the loading direction was
reversed. By virtue of the relaxation of elastic energy stored in the initial state, the
dissipation energy always exceeded the external work.

20 I I [
-= Dissipation energy D/ oo

"-‘2 15 l{ — Total work W /oo :
b 110
&

~ 10

B

8

b 5

=]

109

0 40 80 120 160
Step

Fig. 9. Evolutions of dissipation energy and total work.

In Table 2, the incremental dissipation energies A D at the major steps are listed
in order of the amount of dissipation. The largest dissipation took place in the
loading step 110 during the third loading cycle. As stated above, the first remarkable
shearing strain was observed in this step, but the incremental change in pore
pressure is rather small as shown in Fig. 6. On the contrary, the drastic change in
pore pressure took place in the loading step 121 whose incremental dissipation
energy is ranked in the second. Thus, no correlation is observed between the pore
pressure and the amount of dissipation itself. In the following, the distribution
characteristics of the dissipation energy is discussed.

Figure 10 represents the distributions of dissipation energy for six major
loading steps. In these figures, P indicates the percentage of the dissipation energy at
a single contact point for each loading step, and N is the number of contact points
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Table 2. Incremental dissipation energy at major steps.

Ranking  Step Cycle AD/ oo Prax
1 110 3 2.739 x 107 17.9%
2 121 4 767 28.4
3 8 1 .524 29.5
4 2 1 .429 59.4
5 69 2 .299 16.9
6 26 1 .285 47.8
7 47 2 .282 20.3
8 45 2 224 26.0
9 122 4 .205 20.9

10 142 4 180 13.6
11 27 1 178 36.5
12 126 4 .176 23.3
13 30 1 174 30.7
14 70 2 172 15.7
15 141 4 .163 20.9
16 6 1 .160 31.9
17 5 1 157 17.0
18 68 2 155 32.7
19 50 2 150 10.2
20 139 4 113 62.2

where the extent of dissipation energy exceeds P percent. The maximum value of P
is separately listed in Table 2 as Prax-

The relationship between P and N for the loading step 2 is almost linear in log
scales, which means that the distribution has the fractal nature, and it is noted that
Prax takes the value more than 50%. The granular assembly in such an earlier stage
has not been prepared for the shearing deformation and the magnitudes of
dissipation at contact points are scattering without the mean value, and the
increment of pore pressure takes comparatively large value.

As the cyclic loading proceed to the intermediate stage represented by the steps
69 and 100, the granular assembly once becomes a “mature state”. The pattern of
distribution in such a state is smooth and the distribution has the tendency to
become homogeneous with respect to the major contact points. It is noted that Prax
takes relatively small value, and that the increment of pore pressure is also
comparatively small as observed in Fig. 6.

In the final stage represented by the loading step 121, the pore pressure changes
drastically and the shape of distribution of dissipation energy has a characteristic
pattern as shown in Fig. 10f and Pn.x again takes rather large value. The rapid
change in pore pressure is accompanied by the structural change in granular
assembly and the distribution of dissipation energy during such a process is
inhomogeneous. For drained tests, this process corresponds to the rapid volumetric
change in granular assembly with unstable structures and the irreversible compaction
takes place by virtue of the external confining pressure.
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Fig. 10. Distribution of incremental dissipation energy.

CONCLUDING REMARKS

The simulated results shown in this paper are qualitatively similar to the results
obtained by the usual cyclic tests on real sands. The granular element method
explained in the first part of this paper enables us to know not only the macroscopic
behavior of granular materials but also the micromechanical informations such as
the locations of grains, the distribution of contact forces or the distribution
characteristics of dissipation energy. In this paper, the micromechanical process in
the liquefaction phenomena was investigated through the detailed observation of
dissipation energy.

It was found that the number of contact points which share the dissipation
energy in each loading step is limited and, in several loading steps, there exists a
contact point where the dissipation exceeds more than 50% of whole incremental
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dissipation energy. There was a tendency that the distribution of dissipation energy
is inhomogeneous when the large pore water pressure arises. The distribution
characteristics of dissipation energy in the earlier stage had fractal nature. However,
by the cyclic loading, the distribution pattern changed successively. It can be said
that this is the process by which the granular assembly is mechanically adjusted to
resist against the external action. The granular assembly once becomes a “mature
state” where the mechanical behavior seems to be stable. However, there still exists a
possibility to deform beyond this state and to get large pore water pressure as shown
in the example.

To investigate further on liquefaction, many other tests should be done under
different conditions such as different initial packings or different amplitudes of
cyclic loading. However, the fundamental idea obtained in the example may be
useful to introduce the rational constitutive equations for granular materials. The
computer used for the analysis was a 32-bit engineering work station. The drawback
of the granular element method may be that it requires long computational time. It
sometimes requires many days for an entire numerical test. However, we can use it
to get new informations on micromechanics of granular materials.
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DISCUSSION

Q1. You showed us the distribution of contact forces between particles. Did you
adopt a special method to represent the contact forces? (Takaki, R.)

Al. 1 am using usual method. The contact force vectors are represented by bars.
The axis of a bar corresponds to the direction of contact force and the
thickness is proportional to the intensity. The bar is drawn to intersect the
contact point and it is common for two particles. The length, being equated to
the sum of the radii of two particles, has no significant meanings.

Q2. How does the packing density change through the cyclic loading?
(Brakenhoff, G. J.)

A2. The test was performed under the condition that the pore water can not
escape. So, the volume of the granular assembly was almost constant. Instead
of the volume, the pore water pressure developed and it led the granular
assembly to the state of liquefaction. If the test was performed under the
undrained condition, the volume change might be observed. The densification
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Q3.

A3.

in drained test corresponds to the increase of pore water pressure in undrained
test.

Was the initial packing arranged so that the majority of force was transmitted
through the large particles? (Nakagawa, M.)

The initial arrangement was obtained through the isotropic stressing for an
artificial packing which even did not fulfill the equilibrium conditions. The
pattern of the distribution of contact forces was formed during the stressing.

The similar pattern is also found in the photoelasticity tests on granular
models.



