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Abstract. Among many orthogonal transformations, the discrete Fourier method is
focused because of characteristics as

i) Well reproducibility not only at prescribed N points from contours but over
their intervals,

il) Significant designation and operationability of coefficients.

In succession of considerations on the above characteristics, salient silhouettes
of solid samples under stepwise rotations are analyzed three-dimensionally. From
the results, surface area, volume, shape characteristics such as elongation, flatness
and so on, are correlated with a set of the sine coefficients and the shape samples are
located in a characteristic coordinate space.

INTRODUCTION

The Fourier methods have been developed solely or in cooperation with such
fields as pattern recognitions and information analyses since 1960’s. Schwalcz &
Shane (1969) applied it in approximate finite series to an analysis of grain projection
and they especially interested in its equivalent radius related to the average base
point. Ehrlich & Weinberg (1970) analysed shapes of geological quartzes.

Particle or particulate shapes have been also analysed in its silhouettes by
Fourier series techniques to obtain the qualitative characteristics for physical
properties. Meloy (1977) proceeded with the many research works on powder or
particulate systems extensively since 1969. Beddow (1975) also widely refined the
analysis and extended it to many applications. Although the order is inverted,
historically, Cosgriff (1960) suggested availability of the Fourier descriptors in the
first pioneering work (“Identification of Shape”, Ohio State Univ. Res. Foundation,
Columbus, Rep. 820-11, ASTIA AD 254792). Zahn & Roskies (1972) also system-
atized the Fourier method for character or shape recognitions.

This paper was presented at The Second International Symposium for Science on Form (October
19th-21st, 1988 at the University of Tsukuba, Japan).
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Many research works mentioned above and successive ones have been concerned
with the analysis (discrete or continuous) which may be either the sine-cosine
transformation or the cosine (sine) transformation with phase angles and their
spectral mode has been discussed. In a view of methodrogies, an exceptional but
interesting discrete cosine transformation, DCT of which an argument is defined in
a different manner was discussed by Ahmed et al. (1974). They used an odd index
argument and compared the performance with other methods such as the Karhunen-
Loeve (KLT), the Walsh-Hadamard and the Haar as well as the Fourier expansion.
The theory was commented by Shanmugam (1975) that the transformation is
asymptotically equivalent to the KLT. The DCT may be characteristic as for no
phase angle and the arguments with the odd index. Jain (1979) also introduced some
discrete sine transformations which he considered to a sinusoidal family of unitary
transforms. He applied the transformations to two dimensional image processings
and pursuited the computational performances. The phase angles have rather
random nature, so its has been said that they may be less important than amplitude
coefficients. However, Oppenheim & Lim (1981) showed that more importance of
the phase effects in cases of signal processings and synthesizings than spectral
magnitude. Thus, no phase angle by proper logics may be desirable for better
classifications, reconstructions and information extractions for shapes. As for the
no phase angle, Luerkens, Beddow & Vetter (1982a, b) succeeded to eliminate it with
the size and shape descriptors starting from the usual expressions. Their method
requires the expence of the substantial procedures at the inverse transformation
(Luerkens et al.: 1982a).

In a present report, a simplified discrete Fourier transformation method so-
called a half-range method, is treated. The method uses either sine or cosine function
with no aid of phase angles. And both functions also available at special requests,
for example, in a case of comparison and transition from/to the traditional. The
present analysis should be defined in an open interval (0, 27) instead of a closed one
[0, 2] and therefore two end points 0 and 27 are regarded to special. Consequently,
the present sine or cosine transformation does use no phase angle which will make
many following analyses simpler without loss of their shape informations in the
descriptors except only an initial starting point, =0, where the true value should be
noted as an additional characteristics if only either use.

1. THE DISCRETE FOURIER ANALYSIS FOR PARTICLE SHAPE
CONTOURS

1.1 Informations contained in Fourier sine and cosine coefficients

It is well known that we have to use sine-cosine functions in a Fourier analysis
of an arbitrary continuous univalent function which is classified to neither odd nor
even. Of course, if a function by which a particle contour is described, is evenly
symmetric, then the cosine expansion is available. On the other side, although in the
contour analysis we usually could not carry out with only sine series, its tangent
curve will be described with it in a case of its odd nature. As a matter of fact, in
particurate analyses, it is usual that the cosine expansion has been used under an
axi-symmetrically oriented particurate position, they are sometimes duplicated to
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symmetrical bodies of revolution, such as sphere, ellipsoids and so on. Rhombi or
squares were also compared with the silhouette of particles.

Now, when symmetric patterns are rotated around a certain point, i.e. a center
of gravity, then Fourier cosine informations are changed or transformed into a
sequence of the sine informations degree by degree and vice versa. This may suggest
that the informations have interchangeability. Besides between sine and cosine
coefficients, an even or odd characteristic of trigonometric function is not fixed in
itself but there is some shiftability in contrast to other not-interchangeable functions
such as a linear (odd) and a parabola (even) and so on. Now, let us examine a
function which is transformed,

—a function is represented by discrete points but it has periodic natures—

—it has an even symmetry—
Then, we get transformed functional sequences of which components are as follow,

{Ax cos 2 kt/2N)}, k=1,2, ..., N—1

In the expression, 2N is a number of discrete sample points and ‘.’ is an integer
index.

Now, when we look at the sequence, we may regard it as an even part from a
certain sequence, Ax’ cos(nk’t/2N). For the sake of sameness between symmetry and
even indices we have lost the effect of odd indices as well as an odd symmetry can
have odd indices.

By sin(nt(2k + 1)/2N)
= (B’ cos(nt/2N)) sin(2nk’t/2N) + By’ cos(2nk’t/2N) sin(nt/2N)
= By” sin(2zk’t/2N) + 0 §))

where Bi” is a new constant and this does not depend on its parity and the last term
in the second equation should be eliminated because of its even assumption. The
above relation shows that the two sets of the Fourier coefficients with the suffix k&
from arguments 2k and 2k+1 are compatible. It is suggested that the suffix is not
necessary to be integer but half integers such as k=0.5, 1.5,.. among k=0, 1,... After
this we can use the numeral mn instead of 2. Here, the parameter ‘m’ will take one
for the simplicity and its enough.
Now we refer the identity equation for an arbitrary function f(¢),

fO=O+f(=0}2+{fO—f(—D}/2 2

where the first term in the right side is an even function and the second is an odd
one. The equation does not show a substantial decomposition. However when we
can have defined an odd function and we reduce it from the original f(#), then we
always get a corresponding even function and vice versa.

1.2 Presentation of the simplified discrete Fourier expansion
Form the above considerations, a next set is possible.
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foe(t)——+ Z Ax cos(—%)%— 2 B: sm(%’%)—l—%cos(Nt)(O<t<2n)
3)
Nt nkt
fe(t)=22Akcos(——) 0 < t < 2m) @)
k=1 N
=23 B sin(m) 0 < 1< 2n) (5)
k=1 N
where two coefficients A and B are defined by
N_
A=A 0 cos | 2 ) ©
N-1
Bo= 4 3 A sin | 2 )

k=0,1,.... N—1,i=oe, 0, €.

These equations will be listed later, in refined forms together with f(#)=const.
The equations do almost correspond to the previous except of ‘i’ and absence of a
numeral 2 in the term kt/ N, where N is a number of Fourier samples. Now, with the
use of an open interval (0, 27) for ¢, we can find the equivalent relations among the
set as

Jolt) =f() =fu() =f(O) (0<t<2m). ®)

As for the subscripts, o, e and oe are odd, even and neither odd nor even,
respectively, and finally they will no need to be distinguished. The present sine
series, fo(¢), is not necessary to restrict to the odd characteristic because the even
nature appears in its odd subseries, crosswisely and vice versa.

2. NUMERICAL EXAMPLES AND SOME CHARACTERISTICS BY THE
HALF-RANGE EXPANSION

First of all, let us take up an example of a closed analytical polygon as in Fig. 1.
A circle of a broken curve is by an equivalent diameter and a symmetrical chained
pattern is from a skeletal extract so-called, cosine components of the hexagon and a
couple of trefoils comes from its details (sine components). Here, we illustrate the
inversion in terms of the two series sums (either of sine or cosine coefficients). As the
coefficients with the even suffix are quite same, and the odds are crosswisely
compared with the traditional ones as in Fig. 2. As known from the definition of sine
function, the inverted f(¢) with the sine coefficients has always zero only at the initial
start point =0 in spite of the non-zero of f(0). But it is not fatal. If necessary to
avoid this, a vertical translation of the abcissa may be useful for the elimination of
the initial discrepancy (Fig. 3), resulted to a kind of the epithelium. On a typical
nature of Fourier coefficients, the first cosine coefficient is directly related with the
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Fig. 1. A test pattern—hexagon—.

Odd & even
contributions

Sine, cosine

f(t)

Angle

Fig. 2. Inversed results for hexagon (original).

size of shape as known from Eq. 6 with k=0. Such a nature also approximately
appears in the first nonzero-sine coefficient with k=1. Thus a selection of the sine or
the cosine coefficients may not be absolutely deterministic because of the shiftability.
As for the shift of informations, we have a horizontal rotation of shapes. Figure 4 is
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Fig. 4. Comparison of two smaller coefficients—symmetrical location concentrates informations into
sine coefficients—.
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the result of the rotation and it tells that a symmetrical allocation of shapes extracts
the more significant coefficients into the sine sets and in the linear way related to the
Fourier sampling (Fig. 5).

As for the inversion of shapes, original points on the contour will be always
regenerated correctly. However, in the usual discrete Fourier analysis, only the
original sampling points are defined and other points such as intermediates are
regarded as zero. The present method has an objection to this (Fig. 6).

Figure 7 shows states of erroneous differences at the middle-point where the
largest error will appear. Here, the lines named to the maximum errors lay near the
initial region in a concentrated way. Increasing the sampling points diminishes the
errors more efficiently in the inversion with the sine coefficients.

In order to examine constructive precisions, the initial hexagon was treated
with much more sampling points of 640, and the major coefficients were counted
and were inverse-transformed. The result shows that the major from the more
sampling is not always superior than no cut-off minor (Fig. 8).

Last of the present discrete transformation, three kinds of sums for the sine
coefficients B(2k+1), themselves, squared and cubic, are examined with increasing
the number of Fourier sampling. It is shown that differences of shapes can be
eliminated by the normalization with the size parameter A(0) and the sampling

T T T T T 1
w Ve
E .
o=
holiC]
° < B )
0 S 1+ -
52 8
. o
Ca i / i
- 8
; OL_gl/ | 1 1 1 |

0 1 2 3 x100

Sampling points

Fig. 5. Linear increase of smaller sine coefficients with the sampling points—polygons, triangles,
penta-, hexa-gons etc.—.

a:sarple b: the usual c:the present

Fig. 6. Comparison between the present and the usual.
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137 coeffs. for B(k)/B(1) 0.001

Fig. 8. Cut-off of smaller coefficients, from 640 Fourier sampling points.
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points more than forty will result to stable alternation of the sums, which will be
useful in following main analyses (Fig. 9).

3. EXPERIMENTAL PREPARATION

Every closed contour of image planes is digitized into one valued distance
sequence with incremental angle step and a number of the terms of the sequence is
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forty, which is an enough value for a not-complicated shapes at present. Two base
points in radius vectors may be possible, the center of gravity is a usual one and
another is a mid-point of the length in the shape.

Forty pebbles from a riverside are prepared as solid samples. Their shapes are

Table 1. Dimension of pebble samples.

No. Vol. Area Bulkiness [mm] L.B.T. L.B.T/Vol.
[ec] [cm®’]  Length Breadth Thick. [cc] [1
1 13.5 31.2 48.0 29.0 18.5 25.8 1.91
2 15.5 33.7 48.5 34.0 18.5 31.5 1.97
3 11.2 28.5 440 25.0 18.0 19.8 1.77
4 11.0 28.1 375 335 16.0 20.1 1.83
5 11.1 26.3 39.0 26.5 20.0 20.7 1.86
6 7.5 21.1 41.0 22.5 15.0 13.8 1.84
7 24.5 50.4 68.0 33.0 20.0 449 1.83
8 7.9 19.8 375 21.0 15.0 11.8 1.50
9 13.0 34.8 52.5 325 16.5 28.2 2.17
10 19.5 40.7 54.0 30.0 21.0 34.0 1.74
11 9.0 26.4 41.0 31.0 13.0 16.5 1.84
12 10.0 25.7 36.0 27.5 15.0 14.8 1.48
13 8.0 22.6 36.0 28.0 15.0 15.1 1.89
14 19.0 40.8 59.5 28.0 20.5 34.2 1.80
15 10.5 30.1 41.0 36.0 14.5 21.4 2.04
16 5.7 19.6 35.5 25.5 10.0 9.0s 1.59
17 8.9 23.0 37.5 25.0 16.0 15.0 1.68
18 8.3 24.5 44.0 25.0 15.0 16.5 1.99
19 12.5 30.2 41.5 32.5 18.0 24.3 1.94
20 19.0 32.8 51.5 29.0 24.0 35.8 1.89
22 19.0 40.3 48.0 29.5 20.0 28.3 1.49
23 7.8 20.0 31.0 23.0 19.0 13.6 1.74
25 10.0 27.2 425 29.5 17.0 21.3 2.13
26 8.6 21.8 39.5 20.5 18.0 14.6 1.70
27 16.0 38.8 45.0 49.0 19.5 43.0 2.69
28 8.9 239 41.0 29.0 15.0 17.8 2.00
29 11.0 26.2 39.5 24.5 23.0 22.3 2.02
30 19.0 40.3 42.5 35.5 29.0 43.8 2.30
31 12.0 32.1 61.0 25.0 17.5 26.7 2.22
32 8.9 22.1 33.0 28.0 19.5 18.0 2.02
33 16.5 38.0 52.5 34.5 18.5 33.5 2.03
34 16.0 38.1 47.5 38.0 18.5 33.4 2.09
37 17.5 35.5 39.5 36.0 27.0 38.4 2.19
42 6.2 19.8 37.0 22.5 14.5 12.1 1.95
45 19.0 44.5 55.0 45.5 15.5 38.8 2.04
46 14.0 34.7 48.5 345 17.5 29.3 2.09
47 13.5 36.9 50.0 28.0 25.5 35.7 2.64
50 8.0 20.4 315 28.0 14.5 12.8 1.60
51 15.0 41.6 50.0 48.5 11.5 27.9 1.86
52 17.0 37.7 54.5 33.0 15.5 27.9 1.64
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not-rugose and not-concave and they satisfy our simplified requirements. Basic
dimensions such as surface areas, volumes and bulkiness ratio are listed in Table 1.
As usual, surface area of the body is grated by many pieces of section paper and
these are accumulated as the area. Their volumes are displacement of water volume
and bulkiness is determined from the Feret’s boxing.

Experimental procedures are as follows;

1. Rocation of a sample body. Apparent maximum projection of the solid, on
which a stick for clamping is glued along the extension of its length, is settled to
direct to an initial view as a stable allocation (Fig. 10),

l<——rmxmmlength—>l

* rotation
(step-wise)

front view at 0°
also top v. at 90° rotation

Fig. 10. Sample setting and a selection of a base point. CG: center of gravity, MP: middle point of the
maximum length (or of Feret’s diameter).

2. Images of the body. Silhouette are monitored into the analyser and the
procedure are iterated by several incremental rotations equally spaced about.only a
horizontal angle,

3. Radius vectors, (&) from the silhouettes. They are sampled on the two base
points and transformed by the Fourier method (half-range),

4. Fourier coefficient. The sine coefficient is mainly treated numerically
because of better convergency than the cosine coefficient.

For the visual purpose, shape alternation according to the rotation about the
axes are illustrated in Fig. 11.

Figure 12 is a usual relation with a 2/3-power between the actual areas and the
corresponding volumes of pebbles.

4. ANALYSIS
The above two basis points, the center of gravity (two-dimensional) and the

mid-point may affect on radius vector of plane figures in slightly different ways. In
three-dimensional problems, the center of gravity is shifted according to the change
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Fig. 11. Sketch of silhouettes of a sample of pebbles in incremental rotation.
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Fig. 12. Original data (pebbles). Relation between surface area and volume.

of view sides or directions in spite of its soundness of dynamics. On the other hand,
the mid-point (middle point) keeps the same position, which is one of preferable
properties, if the axis of rotation is deflect-free. In order to confirm the substitution
of base point, two sets of the sine coefficients for a somewhat characteristic shape
are presented in Fig. 13. There is a few disagreement in higher harmonics but it is
considered to be not-troubled in lower ones. In the following, the mid-point is
chiefly selected as the point.

Then, the estimation method of surface area and volume in terms of the Fourier
coefficients are discussed. Figure 14 is an introductive relation between the
measured surface area and the estimated area where a dimensional characteristic
squared, B(k, 8)* are summed up for forty points (Fourier samples) by 18 frames (10
step-deg. half-rotation) in the manner as Parseval’s theory. No substantial differences
in correlation coefficients between the two base points may permit us to use the
mid-point as the base. Figure 15 is a case of a volume estimation as well as Fig. 14.
In comparison of the area estimation to the volume, we found that the flatter shape
has a tendency to inferior accuracy similar as in two dimensional classifications.
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Modification by a three dimensional flatness defined by next f will mitigate the
scattered data (based on the mid-point) as Fig. 16.

=3 log(B(4k + 1)/ B(4k + 3))o-0/ Xk log(B(4k + 1)/ B(4k + 3))s=s0  (9)

4.1 Effects of the incremental angle-step for rotation of the bodies on the surface
and volume estimations

As above mentioned, the solid body were rotated by steps of 10 degs. The step
size should be adjusted according to complexity of surface states. However, in the
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Fig. 16. Flatness-factor loading for volume estimation.

statistical view, we want to use a larger step-angle under the stable estimations, if
possible. Figure 17 includes two cases of projections. One is the single projection
without the rotation and it is the extreme shown by a key “o0”. Previous groups of
particles have been measured to determine the plane size in this way. Such size is
strongly affected by the orientation or the allocation of solid bodies and flat or
longer shapes are apts to be estimated larger sizes. On the other side, the estimated
surface area by multiple-projections show more narrower scattering of the data, a
small effect of the step size of rotations and lower values than the single-projection,
because of additional viewing of smaller project-planes (the second side). A ratio of
the actual surface area to its mean projected area in the present case is 3.46 which is
less than the Cauchy factor of 4.0 (Vouk, 1948) from Figs. 17 & 18. The reason why
we have observed the smaller value is the omission of the third rotation based on
the breadth (the shortest diameter). In spite of this, the surface areas of various
irregular shape put in a good order along the line. Therefore, it is concluded that the
method is available to estimate the surface area.
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Effects of the incremental angles on the volume estimation are shown in Fig. 19.
The coarse steps such as the single or double frames are insufficient apparently, but
more projections than three show a close and available result for the indirect
estimation of the solid volume.

In addition to systematic projections, several random or skipped selections of
planes from regular incremental angle will be interesting especially in the complicated
situations. A coarse incremental angle of 60-deg., i.e. three frames shows almost
stable both for the volume and surface area estimations and a smaller than 30-deg.
will be not necessary (Fig. 20). Here, Data with a key “@” are results from three and
five random samples among the 10-deg. samples. It is remarkable that the random
sets are also useful. The number of Fourier coefficients, forty is not so large, but for
more faster or not-precise guess, some cut-off of coefficient terms is possible as
shown in Fig. 21.

As mentioned above, the surface area has been estimated by the Fourier
analysis in the limited condition where a solid body is not concave and the volume
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Fig. 20. Stability of correlations or measurements. above: surface area, below: volume.

was apted to show a some characteristic indication by shape parameters such as the
elongation. Unless one does not mind any complication, the Fourier descriptors (of
three dimensions) are useful for building up the classification indexes. For example,

a sum, alternate from odd sine coefficients, F1, defined by

F1 = Zuy % log | B(deg, 2k + 1)/ B(deg, 2k + 3)]
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Fig. 21. Cut-off errors in estimation of surface area and volume (whole coeffs. —40).

is a measure of 3D rodness (or elongation).
A ratio of the coefficients with same harmonics but different incremental-angle,
F2 renders larger irregularity

F2 = Y4 3 log | B(deg, 2k + 1)/ B(deg’, 2k + 1)]. (11)

3D flatness is determined with F'3 defined by
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Fig. 22. Shape distribution of pebbles in a characteristic space.
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F3 = Y4 log | SB(deg)/ SBu| (12)
SB(deg) = X« | B(deg, 2k + 1) — B(deg, 2k + 3)| (13)
SB. = Xz SB(deg)/number of planes (or frames). (14)

Into a coordinate space with the above three indexes, we can set the sample
pebbles in a characteristic way as in Fig. 22. These classification will be forward to
further 3D-analyses.

SUMMARY

First, a discrete Fourier transformation method (half-range) is examined. Some
of the sine coefficients can be related through geometrical informations.

Next, multiple projections of pebble samples are developed to surface area and
volume of the pebble through the discrete sine coefficients.
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DISCUSSION

Q. A particle of any shape can be expressed in terms of expansion by the
spherical harmonic function. Is it possible to calculate their coefficients from
the data obtained by your method? (Takaki, R.)

A.  We are not sure at this point, however, the spherical harmonics with half
integers are also definable and they may be very inclusive.
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As I understand it, the only totally unbiased way of estimating specific particle
surface is by the use of lower dimensional (i.e. linear) probes. Your discrete
Fourier Sine transformation would certainly be sensitive to departures from
convexity. There is an interesting paper by Baddeley et al. (1986, J. Microscopy
142: 259-276) which describes a technique that will allow you to unbiasedly
estimate the surface of specific particles using sine weighted linear probes, for
direct comparison of the results obtained by your method. (Howard, C. V.)

Thank you for the information we were not aware of. Surely, Baddeley,
Gundersen & Cruz-Orive discussed the surface area under the title of
“Estimation of Surface Area from Vertical Section”.

Our method uses several vertical surface projections (and Fourier trans-
formation) and this should be distinguished methodologically, from the
vertical sectioning by cutting the body.



