T. SUGIMOTO and M. TANEMURA

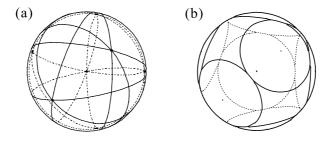


Fig. 6. (a) Our sequential covering for N = 7. (b) Our solution of Tammes problem for N = 7. Both viewpoints are (0, 0, 10). In this example, the coordinates of the centers are respectively (0, 0, -1), (0.16977, -0.96282, -0.21014), (0.97767, 0, -0.21014), (0.16977, 0.96282, -0.21014), (-0.91871, 0.33438, -0.21014), (-0.55588, -0.46644, 0.68806), and (0.39850, 0.33438, 0.85404).

can cover the region except for a point in the kite under the Minkowski condition. Therefore, we find that \bar{r}_6 is the largest spherical distance in the kite. It is obvious that the kite $K_8K_4K_6K_7$ on the sphere is inside the spherical quadrilateral $K_8K_4K_6K_7$ for fixed vertices K_8 , K_4 , K_6 , and K_7 (see Fig. 5). From (8) and the coordinates of K_8 , K_4 , K_6 , and K_7 in Appendix A.1, we find numerically that four vertices of the spherical quadrilateral $K_8K_4K_6K_7$ satisfies the relations $d_s(K_6, K_8) > d_s(K_4, K_7)$, and $\pi/2 \ge d_s(K_6, H) = d_s(H, K_8) = d_s(K_6, K_8)/2 > d_s(H, K_4) = d_s(H, K_7) > 0$ for $\tan^{-1}2 \le r < \pi/2$. Note that *H* is the middle point of the geodesic arc K_6K_8 . Therefore, from Corollary of Theorem 2, the farthest pair of points in the spherical quadrilateral $K_8K_4K_6K_7$ is the pair of K_6 and K_8 ; namely $d_s(K_6, K_8)$ is the largest spherical distance in the kite $K_8K_4K_6K_7$ and is equal to \bar{r}_6 . Then, from (9) and the coordinates of K_6 and K_8 in Appendix A.1, we have

$$r = d_s(K_6, K_8) = \cos^{-1} \left(\frac{41\cos^4 r - 8\cos^3 r - 18\cos^2 r + 1}{9\cos^4 r + 8\cos^3 r - 2\cos^2 r + 1} \right).$$
(10)

In addition, we note $K_8 \in \partial C_5$. Thus, $\bigcup_{\nu=1}^6 C_{\nu}$ is in an extreme state (the set $\bigcup_{\nu=1}^6 C_{\nu}$ covers S except for the point K_6) if and only if M_6 is put on the point K_8 . At this time, K_6 is the unique uncovered point. Equation (10) is solved against r by using mathematical software. As a result, the value of the upper bound for N = 7 is obtained

$$r_7 = \bar{r}_6 = \cos^{-1} \left(1 - \frac{4}{\sqrt{3}} \cos\left(\frac{7\pi}{18}\right) \right) \approx 1.35908$$
 rad. (11)

Therefore, when M_6 and M_7 are put at K_8 and K_6 , respectively, then $\bigcup_{\nu=1}^7 C_{\nu}$ which contains W_6 covers the whole of S (see Fig. 6(a)). Namely, our sequential covering for N = 7 is completed.

Here, we check whether the position of points K_2 and K_5 for M_4 and M_5 satisfy the condition that $\bigcup_{\nu=1}^4 C_{\nu}$ and $\bigcup_{\nu=1}^5 C_{\nu}$ are in an extreme state, respectively. For that purpose,